Math, asked by BrainlyTurtle, 2 months ago

#Quality Question
@Integration

Find Value of
 \int {sec} \: ^ {2/3} x \: cosec \:  ^{4/3} x \: dx


Answers

Answered by shiza7
89

SOLUTION-;

reffered \: to \: the \: attachment

Attachments:
Answered by mathdude500
7

\large\underline{\sf{Solution-}}

\rm :\longmapsto\:\displaystyle\int\rm {sec} \: ^ {2/3} x \: cosec \: ^{4/3} x \: dx

We know,

\boxed{ \sf{ \:secx =  \frac{1}{cosx}}} \:  \: and \:  \: \boxed{ \sf{ \:cosecx =  \frac{1}{sinx}}}

So, using this

\rm \:  =  \:  \:\displaystyle\int\rm \dfrac{ dx }{{\bigg(cosx\bigg) }^{\dfrac{2}{3} }{\bigg(sinx\bigg) }^{\dfrac{4}{3} }}

can be rewritten as

\rm \:  =  \:  \:\displaystyle\int\rm \dfrac{ dx }{{\bigg(cosx\bigg) }^{\dfrac{2}{3} }{\bigg(cosx \times  \dfrac{sinx}{cosx} \bigg) }^{\dfrac{4}{3} }}

\rm \:  =  \:  \:\displaystyle\int\rm \dfrac{ dx }{{\bigg(cosx\bigg) }^{\dfrac{2}{3} }{\bigg(cosx \times  tanx \bigg) }^{\dfrac{4}{3} }}

We know,

\boxed{ \sf{ \: {(xy)}^{m} =  {x}^{m} \times  {y}^{m}}}

So using this, we get

\rm \:  =  \:  \:\displaystyle\int\rm \dfrac{ dx }{{\bigg(cosx\bigg) }^{\dfrac{2}{3} }{\bigg(cosx\bigg) }^{\dfrac{4}{3} }{\bigg(tanx \bigg) }^{\dfrac{4}{3} }}

\rm \:  =  \:  \:\displaystyle\int\rm \dfrac{ dx }{{\bigg(cosx\bigg) }^{\dfrac{2}{3} +  \dfrac{4}{3} }{\bigg(tanx \bigg) }^{\dfrac{4}{3} }}

\rm \:  =  \:  \:\displaystyle\int\rm \dfrac{ dx }{{\bigg(cosx\bigg) }^{\dfrac{2 + 4}{3}}{\bigg(tanx \bigg) }^{\dfrac{4}{3} }}

\rm \:  =  \:  \:\displaystyle\int\rm \dfrac{ dx }{{\bigg(cosx\bigg) }^{\dfrac{6}{3}}{\bigg(tanx \bigg) }^{\dfrac{4}{3} }}

\rm \:  =  \:  \:\displaystyle\int\rm \dfrac{ dx }{{\bigg(cosx\bigg) }^{2}{\bigg(tanx \bigg) }^{\dfrac{4}{3} }}

\rm \:  =  \:  \:\displaystyle\int\rm \dfrac{ {sec}^{2}xdx }{{\bigg(tanx \bigg) }^{\dfrac{4}{3} }}

Now,

To evaluate this integral, we use method of Substitution.

 \red{\rm :\longmapsto\:Put \: tanx = y} \\  \red{\rm :\longmapsto\: {sec}^{2}xdx = dy}

So, above integral can be rewritten as

\rm \:  =  \:  \:\displaystyle\int\rm \dfrac{dy}{{\bigg(y\bigg) }^{ \dfrac{4}{3} }}

\rm \:  =  \:  \:\displaystyle\int\rm {\bigg(y\bigg) }^{ -  \dfrac{4}{3} } \: dy

We know,

\boxed{ \sf{ \:\displaystyle\int\rm  {x}^{n} \: dx \:  =   \:  \frac{ {x}^{n + 1} }{n + 1} \:  +  \: c}}

So, using this result, we get

\rm \:  =  \:  \:\dfrac{{\bigg(y\bigg) }^{ -  \dfrac{4}{3}  + 1}}{ - \dfrac{4}{3}  + 1}  + c

\rm \:  =  \:  \:\dfrac{{\bigg(y\bigg) }^{ -  \dfrac{1}{3}}}{ - \dfrac{1}{3}}  + c

\rm \:  =  \:  \: - 3{\bigg(y\bigg) }^{ -  \dfrac{1}{3} } + c

\rm \:  =  \:  \: - 3{\bigg(tanx\bigg) }^{ -  \dfrac{1}{3} } + c

\rm \:  =  \:  \: - 3{\bigg(cotx\bigg) }^{  \dfrac{1}{3} } + c

\rm \:  =  \:  \: - 3 \:  \sqrt[3]{cotx} \:  +  \: c

Additional Information :-

\boxed{ \sf{ \:\displaystyle\int\rm k \: dx = kx + c}}

\boxed{ \sf{ \:\displaystyle\int\rm cosx \: dx = sinx + c}}

\boxed{ \sf{ \:\displaystyle\int\rm sinx \: dx = -  \:  cosx + c}}

\boxed{ \sf{ \:\displaystyle\int\rm tanx \: dx = -  \:  log \: cosx + c}}

\boxed{ \sf{ \:\displaystyle\int\rm cotx \: dx =  \:  log \: sinx + c}}

\boxed{ \sf{ \:\displaystyle\int\rm secx \: dx =  \:  log \: (secx  \: + \: tanx) +  c}}

\boxed{ \sf{ \:\displaystyle\int\rm cosecx \: dx =  \:  log \: (cosecx  \:  -  \: cotx) +  c}}

\boxed{ \sf{ \:\displaystyle\int\rm  {sec}^{2}x = tanx + c}}

\boxed{ \sf{ \:\displaystyle\int\rm  {cosec}^{2}x =  -  \: cotx + c}}

Similar questions