Math, asked by BrainlyTurtle, 28 days ago

#Quality Question
@Logrithm and Trignometry
■》Last 2nd of the day.

⟼The smallest positive AC satisfying the equation
  \sf log_{cos x}(sinx) +  log_{sinx}(cosx)  = 2 \:  is

Answers

Answered by SparklingBoy
116

《¤¤¤¤¤¤¤¤¤¤¤¤¤¤》

▪Answer :-

 ⟼\green{\large  \bf x = \frac{\pi}{4}  }  \\

___________________________

▪Given :-

⟼\bf log_{cos x}(sinx) + log_{sinx}(cosx) = 2

___________________________

▪To Calculate :-

⟼ Smallest positive x satisfying the above equation.

___________________________

▪Main Formulae Used :-

 \large \bigstar1 )\:  \: \bf log_{n}(m)  =  \frac{log(m)}{ log(n) }  \\  \\ \large  \bigstar2) \:  \:  \bf  log_{n}(m)  = p  \\  \\  \large \bf\implies m =  {n}^{p}

___________________________

▪Solution :-

⟼Let

\sf log_{cos x}(sinx)  = y \\  \\  \implies \sf log_{sinx}(cosx) =  \frac{1}{y}    \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \{ using \:  \:  \bigstar1 \}

So,

\sf log_{cos x}(sinx) + log_{sinx}(cosx) = 2  \\  \\  \implies  \sf y +  \frac{1}{y}  = 2 \\  \\  \implies  \sf  {y}^{2}  + 1 = 2y \\  \\  \implies \sf  {y}^{2}  - 2y + 1 = 0  \\  \\  \implies \sf  {(y - 1)}^{2}  = 0 \\  \\   \bf \implies y = 1

Hence,

\sf log_{cos x}(sinx)  = 1 \\  \\  \implies  \sf sinx = (cosx) {}^{1}  \\  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \{using \: \bigstar2 \} \\  \\  \implies  \sf sinx = cosx \\  \\  \implies \sf \frac{sinx}{cosx}  = 1 \\  \\  \implies \sf tanx = 1 \\  \\    \implies \huge\colorbox{skyblue}{\underline{ \boxed{ \bf x =  \frac{\pi}{4} }}}

___________________________

Answered by BrainlyIshu
90

Let

 log_{cos x}(sinx)  = p \\  \\  \implies \sf log_{sinx}(cosx) =  \frac{1}{p} \\    (\bf\because\bf log_{b}(a)  =\frac{log(a)}{log(b)})

Now we can say that

 log_{cos x}(sinx) + log_{sinx}(cosx) = 2  \\  \\  ⟼  p+  \frac{1}{p}  = 2 \\  \\ ⟼  {p}^{2}  + 1 = 2p \\  \\    ⟼ {(p - 1)}^{2}  = 0 \\  \\⟼  \boxed{\mathfrak{  p = 1}}

Which means

 log_{cos x}(sinx)  = 1 \\  \\  ⟼  sinx = (cosx) {}^{1}  \\  (\bf\because log_b(a)=c⟼a=b^c)\\  \\  ⟼  sinx = cosx \\  \\⟼  tanx = 1 \\  \\    ⟼\Large{\boxed{ \boxed{\pink{ \bf x =  \frac{\pi}{4} }}}}

Similar questions