Math, asked by BrainlyTurtle, 2 months ago

#Quality Question
@Logrithms

If \bf y  = [log \{log(logx) \}] {}^{2}

then Find out the value of dy/dx.

Answers

Answered by SparklingBoy
210

《¤¤¤¤¤¤¤¤¤¤¤¤¤¤》

▪Given :-

 \bf y  = [log \{log(logx) \}] {}^{2}

___________________________

▪To Calculate :-

 \bf \large \blue{{dy/dx}}

___________________________

▪Formulae Used :-

 \bigstar \:  \bf  \frac{d}{dx} f(x) {}^{2}  = 2f(x) \frac{d}{dx} f(x) \\  \\   \bigstar   \bf\frac{d}{dx} log(f(x)) =  \frac{1}{f(x)} . \frac{d}{dx} f(x)

___________________________

▪Solution :-

 \bf y  = [log \{log(logx) \}] {}^{2}

Differentiating both side w.r.t x

 \bf\frac{dy}{dx}  =  \frac{d}{dx} [log \{log(logx) \}] {}^{2}  \\  \\  = \sf2[log \{log(logx) \}] .\frac{d}{dx}  [log \{log(logx) \}] \\  \\  = \sf 2[log \{log(logx) \}]  \times   \frac{1}{ \{log(log \: x) \} } \\  \times     \sf\frac{ d}{dx}   \{log{(log \: x)} \} \\  \\   = \sf 2[log \{log(logx) \}]  \times   \frac{1}{ \{log(log \: x) \} } \\  \times   \sf\frac{1}{log \: x}  \times \frac{d}{dx}log \: x \\  \\  = \sf 2[log \{log(logx) \}]  \times   \frac{1}{ \{log(log \: x) \} } \\  \times   \sf\frac{1}{log \: x}  \times  \frac{1}{x}\\\\{ \underline{\boxed{\bf \frac{dy}{dx}=\frac{2[log \{log(logx)\}]}{x log \: x.\{log(log \: x)\} }}}}

 \Large \red{\mathfrak{  \text{W}hich \:   \: is  \:  \: the  \:  \: required }}\\ \huge \red{\mathfrak{ \text{ A}nswer.}}

___________________________

Answered by BrainlyRish
110

Given that , y = [ log { log ( log x ) } ]² .

Exigency To Find : The value of dy / dx .

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

\qquad \:\: \underline {\pmb{\pink{\cal { FORMULAS \:\:USED \:\: IN \:\: CALCUTION \:\::\:}}}}\\\\

\qquad \sf \:(\:I\:)\: \dfrac{d}{dx}\:f(x)^2 \:\:=\: 2\:f\:(\:x\:) \:\times \: \dfrac{d}{dx}\:f'\:(\:x\:) \:\\\\

\qquad \sf \:(\:II\:)\: \dfrac{d}{dx}\:log\:\big[ f (x) \big]  \:\:=\: \dfrac{1}{\:f\:(\:x\:) } \:\times \:f'\:(\:x\:) \:\\\\

\rule{150}{1.5}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀¤ Finding Value of dy / dx :

\qquad \dashrightarrow \sf y\:=\:\bigg[ \: log\:\big\{ log ( log \:x\:)\:\big\} \:\:\bigg]^2 \:\:\\\\

\qquad \bigstar \:\underline {\purple {\sf By \:,\:Differentiating \:\:both \:\:sides\:\: w.r.t.x \:, \:}}\\

⠀⠀⠀⠀⠀We get ,

 :\implies \sf \dfrac{dy}{dx} \:=\: \dfrac{d}{dx} \:\bigg[ \: log\:\big\{ log ( log \:x\:)\:\big\} \:\:\bigg]^2 \:\: \:\\\\\\:\implies \sf \dfrac{dy}{dx} \:=\:  \:2 \bigg[ \: log\:\big\{ log ( log \:x\:)\:\big\} \:\:\bigg] \:\times \:\dfrac{d}{dx}\bigg[ \: log\:\big\{ log ( log \:x\:)\:\big\} \:\:\bigg] \:\: \:\\\\\\:\implies \sf \dfrac{dy}{dx} \:=\:  \:2 \bigg[ \: log\:\big\{ log ( log \:x\:)\:\big\} \:\:\bigg] \:\times \:\dfrac{1}{log(log \:x)}\:\times \dfrac{d}{dx} \: log\:\big\{ log ( log \:x\:)\:\big\}  \:\: \:\\\\\\:\implies \sf \dfrac{dy}{dx} \:=\:  \:2 \bigg[ \: log\:\big\{ log ( log \:x\:)\:\big\} \:\:\bigg] \:\times \:\dfrac{1}{log(log \:x)}\:\times \dfrac{1}{log\:x} \times \dfrac{d}{dx} \: log\: ( log \:x\:)\:  \:\: \:\\\\\\:\implies \sf \dfrac{dy}{dx} \:=\:  \:2 \bigg[ \: log\:\big\{ log ( log \:x\:)\:\big\} \:\:\bigg] \:\times \:\dfrac{1}{log(log \:x)}\:\times \dfrac{1}{log\:x} \times \dfrac{1}{x} \: \:  \:\: \:\\\\\\:\implies \sf \dfrac{dy}{dx} \:=\: \dfrac{\:2 \bigg[ \: log\:\big\{ log ( log \:x\:)\:\big\} \:\:\bigg]}{x(log\:x)\: \big[ log ( log \:x \:)\:\big] }  \:\: \:\\\\\\:\implies  \underline{\boxed {\pmb{\frak{ \purple { \dfrac{dy}{dx} \:=\: \dfrac{\:2 \bigg[ \: log\:\big\{ log ( log \:x\:)\:\big\} \:\:\bigg]}{x(log\:x)\: \big[ log ( log \:x \:)\:\big] } }}}}}  \:\: \:\\\\

Similar questions