Math, asked by BrainlyTurtle, 1 month ago

#Quality Question

@Sequence And Series

Q]]If a1 , a2 , a3 , ...., an are in AP and
a1 + a4 + a7 + ... + a16 = 114.

Then value of a1 + a6 + a11 + a16 is​

Answers

Answered by SparklingBoy
50

  \green{\large\qquad \qquad \underline{ \pmb{{ \mathbb{ \maltese \:  \:KEY \:  \:  POINT\: \: \maltese}}}}}

  \qquad \qquad  \mathfrak{Use   \: \: nth  \:  \: term \:  \:  of \:  \:  an \:  \:  \text{ AP}  \:  \: i.e. } \\  \mathfrak{a_n=a+(n-1) \text{d}} \\\mathfrak{Simplif \text{y }\:  \:  the \:  \:  given \:  \:  equation } \\  \mathfrak{and  \:  \: use \:  \:  Result}

  \large\qquad \qquad \underline{ \pmb{{ \mathbb{ \bigstar \:  \:   SOLUTION}}}}

 \mathcal{Given  \: A.P. \:  is \:  a_1,a_2,a_3,...,a_n} \\   \mathcal{ Let \:  the  \: Above \:  AP  \: have }\\ \mathcal{  common  \: difference  \:  \bold{d}}

 \huge \mathcal{Also}

 \bf a_1 + a_4 + a_7 + ... + a_{16} = 114. \\  \\  \implies \sf a_1 + (a_1 + 3d)   + \sf (a_1 + 6d)  \\ +  \:  .  \: . \: .  \: +  \sf (a_1 + 15d) = 114 \\  \\  \implies \sf 6a_1 + 45d = 114 \\  \\  \implies  \boxed{ \boxed{\bf2a_1 + 15d = 38}}

 \huge \mathcal{Now,}

 \sf a_1 + a_6 + a_{11} + a_{16} \\  \\  \small  = \sf a_1 + (a_1 + 5d) + (a_1 + 10d) + (a_1 + 15d) \\  \\  =  \sf4a_1 + 30d = 2(2a_1 + 15d) \\  \\  \bf \large  = 2 \times 38 = 76

Answered by Itzheartcracer
41

Given :-

If  a1 , a2 , a3 , ...., an are in AP and

a1 + a4 + a7 + ... + a16 = 114.

To Find :-

Value of a1 + a6 + a11 + a16 is​

Solution :-

So,

The terms are going like

a₁ + a₄ + a₇ + a₁₀ + a₁₃ + a₁₆ = 114

a have repeated 6 times

6/2(a₁ + a₁₆) = 114

3(a₁ + a₁₆) = 114

a₁ + a₁₆ = 114/3

a₁ + a₁₆ = 38 (1)

Now

Now

a₁ + a₆ + a₁₁ + a₁₆

Terms = 4

4/2(a₁ + a₁₆)

4/2 × 38

152/2

76

[tex][/tex]

Similar questions