#Quality Question
@Trigonometry
If θ is Acute angle and 3sinθ = 4cosθ then Find out the value of 4sin2θ - 3cos2θ + 2.
Answers
Answered by
1
Answer:
We have,
3sinθ+4cosθ=5 ………. (1)
On squaring both sides, we get
(3sinθ+4cosθ)
2
=5
2
9sin
2
θ+16cos
2
θ+24sinθcosθ=25
9(1−cos
2
θ)+16(1−sin
2
θ)+12×2sinθcosθ=25
9−9cos
2
θ+16−16sin
2
θ+12×2sinθcosθ=25
25−9cos
2
θ−16sin
2
θ+12×2sinθcosθ=25
9cos
2
θ+16sin
2
θ−12×2sinθcosθ=0
(3cosθ−4sinθ)
2
=0
3cosθ−4sinθ=0
Hence, the value is 0.
Answered by
1
Answer:
༒ Question ➽
If θ is Acute angle and 3sinθ = 4cosθ then Find out the value of 4sin2θ - 3cos2θ + 2.
___________________________
༒ Given ➽
___________________________
༒ To Find ➽
___________________________
༒ Solution ➽
As
So,
Hence,
So,
As θ is Acute so sinθ will not negative
Hence,
Now,
___________________________
༒ Alernate Solution ➽
As
Squaring We get
We Know
Now,
___________________________
Similar questions