Math, asked by BrainlyTurtle, 2 months ago

#Quality Question

@Trigonometry + Logrithms

In the interval [-π/2,π/2]
the equation

 \bf \large log_{sin \alpha }(cos2 \alpha ) = 2
has

1) no Solution
2) a Unique Solution
3) two Solution
4) infinite solutions

Full explanation Needed.

Answers

Answered by SparklingBoy
96

  \color{brown}{ \large{\qquad \qquad \underline{ \pmb{{ \mathbb{ \maltese  \:  ANSWER \:   \maltese }}}}}}

 \huge  \bf \red{ \mathfrak{b) \: a \: unique \: sol {}^{n} }}

 \color{maroon}{\qquad  \underline{ \pmb{{ \mathbb{ \maltese  \:  \:  \: REQUIRED  \:  \: INFO \:  \:  \:  \maltese }}}}}

  \bigstar  \bf \:  \:  \:  \:  log_{n}(m) = x \\  \\  \implies  \bf m =  {n}^{x}  \\  \\  \bigstar  \:  \:  \:  \:  \bf Range \: of \: sin \theta = [ - 1 ,1 ] \\   \bf when \:  \theta  \in[ \frac{ - \pi}{2}, \frac{\pi}{2} ]\\  \\  \bigstar \bf \:  \:  \:  \: cos2 \theta = 1 - 2 {sin}^{2}  \theta \\  \\  \bigstar \:  \:  \:  \:  \bf Base  \:  of \: Log \: cant't \: be  \: Negative

 \color{magenta} \large{\qquad \underline{ \pmb{{ \mathbb{ \maltese  \:  SOLUTION \:   \maltese }}}}}

 \huge \mathfrak{ \text{W}e  \:  \:  \text{H}ave}

 \bf  log_{sin \alpha }( \cos2 \alpha )   = 2 \\  \\ \sf  cos2 \alpha  = ( {sin \alpha })^{2}  \\  \\  \sf cos2 \alpha  =  {sin}^{2}  \alpha  \\  \\  \sf1 - 2 {sin}^{2}  \alpha  = sin  {}^{2} \alpha  \\  \\  \sf 3 {sin}^{2}  \alpha  = 1 \\  \\  \bf sin \alpha  =  \pm \frac{1}{ \sqrt{3} }  \\  \\   \bf{sin \alpha  \ne  - ve} \:  \:  \: ( \because base \: of \: log) \\  \\  \huge \mathfrak{ \text{S}o} \\  \\ \green{ \boxed{ \boxed{ \bf sin \alpha =  \frac{1}{ \sqrt{3} }  }}}

  \huge\mathfrak{ \text{H}ence}

  \large\mathfrak{The  \:\: Eq^n \: \: has \:  \:a \: \: Unique \: \: Solution}

Answered by NewtonBaba420
49

Solution:

Starting up with the Given Equation

 \bf log_{sin \alpha }( cos2 \alpha )   = 2   \\  \\   cos2 \alpha  =  {sin}^{2}  \alpha \\(\because log_{y}(x) = p\implies   x =  {y}^{p})\\  \\  1 - 2 {sin}^{2}  \alpha  = sin^{2} \alpha \\(\because cos2\theta=1-2sin^{2}\theta) \\  \\  3 {sin}^{2}  \alpha  = 1 \\  \\  sin \alpha  =  \pm \frac{1}{ \sqrt{3} }  \\  \\  sin \alpha  \: can't \:be \: negative  \\  (\because\:base \: of \: log\: must \: be: positive)\\  \\  \huge\\  \\ \bf \implies sin \alpha =  \frac{1}{ \sqrt{3}}

Hence there is only one solution

option 2 is correct

Similar questions