Math, asked by BrainlyTurtle, 2 months ago

#Quality Question
@Trigonometry

Prove that
 \bf( {1 - tanA)}^{2} (1 -  {cotA)}^{2}  = (secA - cosecA) {}^{2}

Answers

Answered by SparklingBoy
128

༒ To Prove :-

 \Large\bf( {1 - tanA)}^{2} (1 - {cotA)}^{2}  \\\Large= \bf(secA - cosecA) {}^{2}

___________________________

༒ Formulae Used :-

 \bf \maltese \:  \:  \: 1 +  {tan}^{2} A = sec {}^{2} A \\ \\   \bf \maltese \:  \:  \: 1 +  {cot} {}^{2}  A =  {cosec}^{2} A  \\ \\  \bf \maltese \:  \:  \:  sin^2\theta+cos^2\theta=1 \\ \\  \bf \maltese \:  \:  \:  \frac{1}{sin\theta}=cosec\theta \\ \\  \bf \maltese \:  \:  \:  \frac{1}{cos\theta}=sec\theta

___________________________

༒ Proof :-

  \sf  {(1  -  tanA) }^{2}  +  {(1 - cot A)}^{2}  \\  \\  \sf = (1 +  {tan}^{2}A  - 2tanA)  \\  \sf+ ( 1 +  {cot}^{2} A - 2cotA) \\  \\  \sf =  {sec}^{2} A - 2tanA +  {cosec}^{2} A - 2cotA \\  \{  \bf\because1 +  {tan}^{2} A = sec {}^{2} A \\ \bf and1 +  {cot} {}^{2}  A =  {cosec}^{2} A \} \\  \\  = \sf  {sec}^{2} A +  {cosec}^{2} A - 2( tanA + cotA) \\  \\  =  \sf {sec}^{2} A +  {cosec}^{2} A - 2( \frac{sinA }{cosA }+  \frac{cosA}{sinA} ) \\  \\  \sf =  {sec}^{2} A +  {cosec}^{2} A - 2( \frac{ {sin}^{2} A +  {cos}^{2}A)}{cosA \: sin A }  \\  \\  =  \sf {sec}^{2}  +  {cosec}^{2} A - 2( \frac{1}{sinA \: cos A  } )\\\{\bf\because sin^2\theta+cos^2\theta=1\} \\  \\  \sf =  {sec}^{2} A +  {cosec}^{2} A - 2secA \: cosecA \\\\ \{\bf\because\frac{1}{sin\theta}=cosec\theta\\ \bf and\:\:\frac{1}{cos\theta}=sec\theta\} \\  \\  \sf = (secA - cosecA) {}^{2}

 \Large \red{\mathfrak{  \text{W}hich \:   \: is  \:  \: the  \:  \: required} }\\ \huge \red{\mathfrak{ \text{ A}nswer.}}

___________________________

Answered by Anonymous
60

\huge{\mathbb{Solution↓}}

\begin{gathered} \sf {(1 - tanA) }^{2} + {(1 - cot A)}^{2} \\ \\ \sf = (1 + {tan}^{2}A - 2tanA) \\ \sf+ ( 1 + {cot}^{2} A - 2cotA) \\ \\ \sf = {sec}^{2} A - 2tanA + {cosec}^{2} A - 2cotA \\ \{ \bf\because1 + {tan}^{2} A = sec {}^{2} A \\ \bf and1 + {cot} {}^{2} A = {cosec}^{2} A \} \\ \\ = \sf {sec}^{2} A + {cosec}^{2} A - 2( tanA + cotA) \\ \\ = \sf {sec}^{2} A + {cosec}^{2} A - 2( \frac{sinA }{cosA }+ \frac{cosA}{sinA} ) \\ \\ \sf = {sec}^{2} A + {cosec}^{2} A - 2( \frac{ {sin}^{2} A + {cos}^{2}A)}{cosA \: sin A } \\ \\ = \sf {sec}^{2} + {cosec}^{2} A - 2( \frac{1}{sinA \: cos A } )\\\{\bf\because sin^2\theta+cos^2\theta=1\} \\ \\ \sf = {sec}^{2} A + {cosec}^{2} A - 2secA \: cosecA \\\\ \{\bf\because\frac{1}{sin\theta}=cosec\theta\\ \bf and\:\:\frac{1}{cos\theta}=sec\theta\} \\ \\ \sf = (secA - cosecA) {}^{2} \end{gathered}

Hence proved

HOPE IT HELPS YOU.

Similar questions