Math, asked by BrainlyTurtle, 1 month ago

#Quality Question

# Continuity and Diffrentiability

See Attachment ​

Attachments:

Answers

Answered by mk28816615
0

Step-by-step explanation:

Continuity and Differentiability is one of the most important topics which help students to understand the concepts like, continuity at a point, continuity on an interval, derivative of functions and many more. ... It implies that this function is not continuous at x=0

Answered by abhi569
4

Question:

f(x) = {sin(a + 2)x + sinx}/x  ; x < 0

    = b    ; x = 0

    = ((x + 3x^2)^(1/3) - x^(1/3))/x^(4/3) ;x>0

is continuous at x = 0,  then a + 2b is equal to  (-2)

Answer:

 \sf{ \underline{For \:x &lt;0: }}\\

 \sf{\lim _{x \rightarrow0 {}^{ - } } \dfrac{sin(a + 2)x + sinx}{x}} \\\\ \sf {\lim _{x \rightarrow0  {}^{ - }  } \dfrac{sin(a + 2)x}{x} +  \lim _{x \rightarrow0 {}^{ - } }\dfrac{sinx}{x}} \\\\ \sf{ \lim _{x \rightarrow0 {}^{ - } }(a + 2) \dfrac{sin(a + 2)x}{(a + 2)x} +  \lim _{x \rightarrow0 {}^{ - } }\dfrac{sinx}{x}} \\\\  \sf{(a + 2)\lim _{x \rightarrow0 {}^{ - } }\dfrac{sin(a + 2)x}{(a + 2)x} +  \lim _{x \rightarrow0 {}^{ - } }\dfrac{sinx}{x} }  \\\\(a + 2)(1) + 1  \\ a + 3\\

\\

 \sf{\underline{For  \: x = 0:}    f(x) = b}\\

\\

 \sf{ \underline{For  \: x &gt; 0 : }}\\

\lim _{x \rightarrow0 {}^{ + } } \frac{(x + 3x {}^{2}) {}^{ \frac{1}{3} } - x {}^{ \frac{1}{3}  }}{x {}^{ \frac{4}{3}} } \\\\ \lim _{x \rightarrow0 {}^{ + } } \frac{x {}^{ \frac{1}{3} } (1 + 3x {}^{}) {}^{ \frac{1}{3} } - x {}^{ \frac{1}{3}}}{x {}^{ \frac{4}{3}} } \\\\ \lim _{x \rightarrow0 {}^{ + } } \frac{x {}^{ \frac{1}{3} } ((1 + 3x {}^{}) {}^{ \frac{1}{3} } - 1 ){}^{ \frac{}{}}}{x {}^{ \frac{4}{3}} }  \\\\ \lim _{x \rightarrow0 {}^{ + } } \frac{(1 + 3x) {}^{ \frac{1}{3} }  - 1}{x}

This is an intermediate form. Using L-Höpital rule:

\lim _{x \rightarrow0 {}^{ + } } \frac{ \frac{1}{3} (1 + 3x) {}^{ \frac{1}{3}  -1} + 0}{1}  = \frac{1}{3} \\

\\

 \sf{Therefore, for \:  continuity \:  at  \: x = 0, } \\ \lim _{x \rightarrow0 {}^{  -  } }f(0) =  \lim _{x \rightarrow0 {}^{ + } }f(0) = f(0) \\ a + 3 = b =  \frac{1}{3}

From here we get, a = - 8/3 and b = 1/3

Hence, a + 2b = - 8/3 + 2(1/3)

                        = - 2

Similar questions