Math, asked by BrainlyTurtle, 1 month ago

#Quality Question

# Limits

Find the value of

Attachments:

Answers

Answered by rishu6845
2

Answer:

 \huge{ \pink{36}}

Step-by-step explanation:

  \displaystyle{\lim} \: x \longrightarrow2 \:  \:  \:  \dfrac{ {3}^{x}  +  {3}^{3 - x} - 12 }{ {3}^{ -  \frac{x}{2} }  -  {3}^{1 - x} }  \\  =  \lim \: x \longrightarrow2 \:  \:  \:  \dfrac{ {3}^{x} +  {3}^{3}   {3}^{ - x} - 12 }{ ({ {3}^{ - x}) }^{ \frac{1}{2} }  - 3 \:  {3}^{ - x} } \\ let \:  {3}^{x}    = y \\when \:  \:  x \longrightarrow2  \\ \:  \: y \longrightarrow9 \\  =  \lim \: y \longrightarrow9 \: \:  \:  \dfrac{y +  \dfrac{27}{y}  - 12}{ {( \dfrac{1}{y} )}^{ \dfrac{1}{2} } -  \dfrac{3}{y}  } \\   = \lim \: y \longrightarrow \: 9 \:  \dfrac{ \dfrac{ {y}^{2}  + 27 - 12y}{y} }{ \dfrac{ \sqrt{y} - 3 }{y} }  \\  =  \lim \: y \longrightarrow 9 \:   \: (\dfrac{ {y}^{2} - 12y + 27 }{ \sqrt{y} - 3 } ) \\  =  \lim \: y \longrightarrow9 \:  \:  \dfrac{ {y}^{2}  - 9y - 3y + 27}{ \sqrt{y}  - 3}  \\  =  \lim \: y \longrightarrow9 \:  \:  \:  \dfrac{(y - 9) \: (y - 3)}{ \sqrt{y} - 3 }  \\  =  \lim \: y \longrightarrow9 \:  \:  \dfrac{ ({( \sqrt{y}) }^{2} -  {(3)}^{2} ) \:  \: (y - 3) }{( \sqrt{y} - 3) }  \\  =   \lim \: y \longrightarrow9 \:  \:  \dfrac{( \sqrt{y} + 3) \: ( \sqrt{y}   - 3) \: (y - 3)}{ \sqrt{y}  - 3}  \\  =  \lim \: y \longrightarrow9 \:  \: ( \sqrt{y}  + 3) \: (y - 3) \\  = ( \sqrt{9}  + 3) \: (9 - 3) \\  = (3 + 3) \: (6) \\  = 36

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Consider,

\rm :\longmapsto\:\displaystyle\lim_{x \to 2}\bf \dfrac{ {3}^{x} +  {3}^{3 - x} - 12}{ {3}^{ - \frac{x}{2} } -  {3}^{1 - x}  }

can be rewritten as

\rm \:  = \:\displaystyle\lim_{x \to 2}\sf \dfrac{ {3}^{x} +  {3}^{3} {3}^{ - x}  - 12}{ {3}^{ - \frac{x}{2} } -  {3}^{1} {3}^{ - x}  }

\rm \:  = \:\displaystyle\lim_{x \to 2}\sf \dfrac{ {3}^{x} +  \dfrac{27}{ {3}^{x} }   - 12}{ \dfrac{1}{ {3}^{ \frac{x}{2} } }  -  \dfrac{3}{ {3}^{x} }  }

 \red{\rm :\longmapsto\:Put \: \bigg(3 \bigg)^{\dfrac{x}{2} }  = y}

So,

 \red{\rm :\longmapsto\: {3}^{x} =  {y}^{2}}

As,

 \red{\rm :\longmapsto\:x \:  \to \: 2 \:  \: so \:  \: y \:  \to \: 3}

So, above limit reduces to

\rm \:  =  \:  \: \displaystyle\lim_{y \to 3}\sf \dfrac{ {y}^{2}  + \dfrac{27}{ {y}^{2} } - 12 }{\dfrac{1}{y} - \dfrac{3}{ {y}^{2} }  }

On taking LCM, we get

\rm \:  =  \:  \: \displaystyle\lim_{y \to 3}\sf \dfrac{ {y}^{4}  + 27 - 12 {y}^{2} }{y - 3}

If we put directly y = 3, we get indeterminant form,

\rm \:  =  \:  \: \displaystyle\lim_{y \to 3}\sf \dfrac{ {y}^{4} - 12 {y}^{2}  + 27}{y - 3}

\rm \:  =  \:  \: \displaystyle\lim_{y \to 3}\sf \dfrac{ {y}^{4} - 9 {y}^{2} -  {3y}^{2}   + 27}{y - 3}

\rm \:  =  \:  \: \displaystyle\lim_{y \to 3}\sf \dfrac{ {y}^{2}( {y}^{2}  - 9) - 3( {y}^{2} -  9)}{y - 3}

\rm \:  =  \:  \: \displaystyle\lim_{y \to 3}\sf \dfrac{ ({y}^{2} - 3)( {y}^{2}  - 9) }{y - 3}

\rm \:  =  \:  \: \displaystyle\lim_{y \to 3}\sf \dfrac{ ({y}^{2} - 3)( {y}^{2}  -  {3}^{2} ) }{y - 3}

\rm \:  =  \:  \: \displaystyle\lim_{y \to 3}\sf \dfrac{ ({y}^{2} - 3)(y + 3)(y - 3) }{y - 3}

\rm \:  =  \:  \: \displaystyle\lim_{y \to 3}\sf ({y}^{2} - 3)(y + 3)

\rm \:  =  \:  \: (9 - 3)(3 + 3)

\rm \:  =  \:  \: 6\times 6

\rm \:  =  \:  \: 36

Hence,

\rm :\longmapsto\:\displaystyle\lim_{x \to 2}\bf \dfrac{ {3}^{x} +  {3}^{3 - x} - 12}{ {3}^{ - \frac{x}{2} } -  {3}^{1 - x}  }  = 36

Additional Information :-

 \blue{ \boxed{\displaystyle\lim_{x \to 0}\bf  \: \frac{sinx}{x} = 1}}

 \blue{ \boxed{\displaystyle\lim_{x \to 0}\bf  \: \frac{tanx}{x} = 1}}

 \blue{ \boxed{\displaystyle\lim_{x \to 0}\bf  \: \frac{log(1 + x)}{x} = 1}}

 \blue{ \boxed{\displaystyle\lim_{x \to 0}\bf  \: \frac{ {e}^{x}  - 1}{x} = 1}}

 \blue{ \boxed{\displaystyle\lim_{x \to 0}\bf  \: \frac{ {a}^{x}  - 1}{x} = loga}}

 \blue{ \boxed{\displaystyle\lim_{x \to 0}\bf  \: \frac{sin^{ - 1} x}{x} = 1}}

 \blue{ \boxed{\displaystyle\lim_{x \to 0}\bf  \: \frac{tan^{ - 1} x}{x} = 1}}

Similar questions