Math, asked by BrainlyTurtle, 1 month ago

#Quality Question

#Limits

See Attachment

Attachments:

Answers

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Consider,

\rm :\longmapsto\:\displaystyle\lim_{x \to 0}\rm \bigg(\dfrac{ {3x}^{2}  + 2}{ {7x}^{2}  + 2}\bigg)^{\dfrac{1}{ {x}^{2} } }

On adding and Subtracting 1, we get

\rm \:  = \:\displaystyle\lim_{x \to 0}\rm \bigg(1 + \dfrac{{3x}^{2}  + 2}{ {7x}^{2}  + 2} - 1\bigg)^{\dfrac{1}{ {x}^{2} } }

\rm \:  = \:\displaystyle\lim_{x \to 0}\rm \bigg(1 + \dfrac{{3x}^{2}  + 2 - ( {7x}^{2}  + 2 )}{ {7x}^{2}  + 2} \bigg)^{\dfrac{1}{ {x}^{2} } }

\rm \:  = \:\displaystyle\lim_{x \to 0}\rm \bigg(1 + \dfrac{{3x}^{2}  + 2 -  {7x}^{2}    - 2 }{ {7x}^{2}  + 2} \bigg)^{\dfrac{1}{ {x}^{2} } }

\rm \:  = \:\displaystyle\lim_{x \to 0}\rm \bigg(1 + \dfrac{ - {4x}^{2}}{ {7x}^{2} + 2} \bigg)^{\dfrac{1}{ {x}^{2} } }

\rm \:  = \:\displaystyle\lim_{x \to 0}\rm \bigg(1 + \dfrac{ - {4x}^{2}}{ {7x}^{2} + 2} \bigg)^{\dfrac{ - 4 {x}^{2} }{ {x}^{2} ( {7x}^{2}  + 2)} }

We know,

 \red{ \boxed{ \bf \: \displaystyle\lim_{x \to 0}\bf  \: \bigg(1 + x \bigg)^{ \dfrac{1}{x} } = e}}

So, using this result, we get

\rm \:  =  \:  \:  {e} \:  \: ^{\displaystyle\lim_{x \to 0}\sf  \:  \: \dfrac{ - 4}{ {7x}^{2}  + 2} }

\rm \:  =  \:  \:  {e} \: ^{\dfrac{ - 4}{2} }

\rm \:  =  \:  \:  {e}^{ - 2}

Hence,

\rm :\longmapsto\:\displaystyle\lim_{x \to 0}\bf \bigg(\dfrac{ {3x}^{2}  + 2}{ {7x}^{2}  + 2}\bigg)^{\dfrac{1}{ {x}^{2} } } =  {e}^{ - 2}

Alternative Method :-

Consider,

\rm :\longmapsto\:\displaystyle\lim_{x \to 0}\rm \bigg(\dfrac{ {3x}^{2}  + 2}{ {7x}^{2}  + 2}\bigg)^{\dfrac{1}{ {x}^{2} } }

Let assume that

\rm :\longmapsto\:y = \displaystyle\lim_{x \to 0}\rm \bigg(\dfrac{ {3x}^{2}  + 2}{ {7x}^{2}  + 2}\bigg)^{\dfrac{1}{ {x}^{2} } }

Taking log on both sides, we get

\rm :\longmapsto\:logy = \displaystyle\lim_{x \to 0}\rm log \: \bigg(\dfrac{ {3x}^{2}  + 2}{ {7x}^{2}  + 2}\bigg)^{\dfrac{1}{ {x}^{2} } }

\rm :\longmapsto\:logy = \displaystyle\lim_{x \to 0}\rm \:  {\dfrac{1}{ {x}^{2} } }log \: \bigg(\dfrac{ {3x}^{2}  + 2}{ {7x}^{2}  + 2}\bigg)

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \red{\bigg \{ \because \:  log( {x}^{y} ) = y log(x)  \bigg \}}

\rm :\longmapsto\:logy = \displaystyle\lim_{x \to 0}\rm \:  {\dfrac{log(3 {x}^{2}  + 2) - log( {7x}^{2}  + 2)}{ {x}^{2} } }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \red{\bigg \{ \because \:  log( \dfrac{x}{y} ) = logx - logy \bigg \}}

On applying L - Hospital Rule, we get

\rm :\longmapsto\:logy = \displaystyle\lim_{x \to 0}\rm \:  {\dfrac{ \dfrac{d}{dx} log(3 {x}^{2}  + 2) - \dfrac{d}{dx}log( {7x}^{2}  + 2)}{ \dfrac{d}{dx}{x}^{2} } }

\rm :\longmapsto\:logy = \displaystyle\lim_{x \to 0}\rm \:  {\dfrac{ \dfrac{1}{ {3x}^{2}  + 2} (6x) - \dfrac{1}{ {7x}^{2}  + 2}(14x)}{ 2x} }

 \sf\red{\bigg \{ \because \: \dfrac{d}{dx}logx =  \dfrac{1}{x} \bigg \}} \:  \:  \: and \:  \: \red{\bigg \{ \because \: \dfrac{d}{dx} {x}^{n} =  {nx}^{n - 1}  \bigg \}}

On cancel 2x from numerator and denominator, we get

\rm :\longmapsto\:logy = \displaystyle\lim_{x \to 0}\rm \:  {\dfrac{ \dfrac{1}{ {3x}^{2}  + 2} (3) - \dfrac{1}{ {7x}^{2}  + 2}(7x)}{ 1} }

\rm :\longmapsto\:logy = \dfrac{3}{2}  - \dfrac{7}{2}

\rm :\longmapsto\:logy = \dfrac{3 - 7}{2}

\rm :\longmapsto\:logy = \dfrac{ - 4}{2}

\rm :\longmapsto\:logy =  - 2

\bf\implies \:y =  {e }^{ - 2}

Hence,

\rm :\longmapsto\:\displaystyle\lim_{x \to 0}\bf \bigg(\dfrac{ {3x}^{2}  + 2}{ {7x}^{2}  + 2}\bigg)^{\dfrac{1}{ {x}^{2} } } =  {e}^{ - 2}

Additional Information :-

 \blue{ \boxed{\displaystyle\lim_{x \to 0}\bf  \: \frac{sinx}{x} = 1}}

 \blue{ \boxed{\displaystyle\lim_{x \to 0}\bf  \: \frac{tanx}{x} = 1}}

 \blue{ \boxed{\displaystyle\lim_{x \to 0}\bf  \: \frac{ {sin}^{ - 1} x}{x} = 1}}

 \blue{ \boxed{\displaystyle\lim_{x \to 0}\bf  \: \frac{ {tan}^{ - 1} x}{x} = 1}}

 \blue{ \boxed{\displaystyle\lim_{x \to 0}\bf  \: \frac{log(1 + x)}{x} = 1}}

 \blue{ \boxed{\displaystyle\lim_{x \to 0}\bf  \: \frac{ {e}^{x}  - 1}{x} = 1}}

 \blue{ \boxed{\displaystyle\lim_{x \to 0}\bf  \: \frac{ {a}^{x}  - 1}{x} = loga}}

 \red{ \boxed{ \bf \: \displaystyle\lim_{x \to 0}\bf  \: \bigg(1 + x \bigg)^{ \dfrac{1}{x} } = e}}

 \red{ \boxed{ \bf \: \displaystyle\lim_{x \to 0}\bf  \: \bigg(1 + kx \bigg)^{ \dfrac{1}{x} } =  {e}^{k} }}

Similar questions