Math, asked by HelpfulQuestioner, 1 month ago

#QualityQuestion
@Matrix

Determine the inverse of each of the matrixes, if it exists.
 {\begin{bmatrix} 2 & -3 & 3\\ 2 & 2 & 3 \\ 3& -2 & -2 \end{bmatrix} }

Answers

Answered by CelestialCentrix
122

Steps by Sarru's rule:

 \tt\left(\begin{matrix}  2  & -3  & 3 \\2  & 2  & 3 \\3  & -2  & -2   \end{matrix}\right)

Find the determinant of the matrix using the method of diagonals.

⇉det(\left(\begin{matrix}2&-3&3\\2&2&3\\3&-2&-2\end{matrix}\right))

Extend the original matrix by repeating the first two columns as the fourth and fifth columns.

 ⇉\left(\begin{matrix}2&-3&3&2&-3\\2&2&3&2&2\\3&-2&-2&3&-2\end{matrix}\right)

Starting at the upper left entry, multiply down along the diagonals, and add the resulting products.

⇉ \tt \:2\times 2\left(-2\right)-3\times 3\times 3+3\times 2\left(-2\right)=-47

Starting at the lower left entry, multiply up along the diagonals, and add the resulting products.

 ⇉\sf \: 3\times 2\times 3-2\times 3\times 2-2\times 2\left(-3\right)=18

Subtract the sum of the upward diagonal products from the sum of the downward diagonal products.

⇉-47-18

⇉-65

_____________________

\bold\blue{Celestial}\bold\green{Centrix}


Anonymous: Great!
Answered by abhi569
77

Question: Determine the inverse of each of the matrixes, if it exists.

a11 = 2, a12 = -3, a33 = 3

a21 = 2, a22 = 2, a23 = 3

a31 = 3, a32 = -2, a33 = -2

Answer:

As determinant 0, inverse exists.

\frac{ 1}{65}{\begin{bmatrix} -  2&  12& 15 \\ - 13& 13 & 0\\ 10& 5 &  - 10\end{bmatrix} }

Step-by-step explanation:

 \sf Using, \boxed{A {}^{ - 1} =\frac{1}{ |A| }(adj A)}

 \sf adj A _{ }  = {\begin{bmatrix} A _{11 } & A _{ 12} & A _{ 13} \\A _{21} & A _{22 } & A _{ 23}\\A _{ 31}  &A _{ 32} & A _{ 33}  \end{bmatrix} } {}^{ {}^{ {}^{ {}^{ {}^{ {}^{ ^{t} } } } } } }  \\  \\

Solving for adj A :

A _{11} = {\begin{vmatrix} a _{22 } & a _{ 23}  \\ a_{ 32} & a _{ 33}  \end{vmatrix} }  ={\begin{vmatrix}2& 3 \\- 2&- 2 \end{vmatrix} }= 2 \\ A _{12} = - {\begin{vmatrix} a _{21 } & a _{ 23}  \\ a_{ 31} & a _{ 33} \end{vmatrix} }  = -   {\begin{vmatrix}2& 3 \\3&- 2 \end{vmatrix} }= 13  \\ A _{13} = {\begin{vmatrix} a _{21} & a _{ 22}  \\ a_{ 31} & a _{ 32}  \end{vmatrix} }={\begin{vmatrix}2& 2 \\3&- 2 \end{vmatrix} } =  - 10 \\ A _{21} = -  {\begin{vmatrix} a _{12} & a _{13}\\ a_{ 32} & a _{ 33}  \end{vmatrix} } = -  {\begin{vmatrix} - 3& 3 \\- 2&- 2 \end{vmatrix} } =  - 12 \\ A _{22} = {\begin{vmatrix} a _{11 } & a _{13}  \\ a_{ 31} & a _{ 33}  \end{vmatrix} }  ={\begin{vmatrix}2& 3 \\3&- 2 \end{vmatrix} }   =  - 13 \\ A _{23} =  - {\begin{vmatrix} a _{11} & a _{ 12}  \\ a_{ 31} & a _{ 32}  \end{vmatrix} }= - {\begin{vmatrix}2&  - 3 \\3&- 2 \end{vmatrix} } = - 5 \\ A _{31} = {\begin{vmatrix} a _{12} & a _{13}  \\ a_{ 22} & a _{ 23}  \end{vmatrix} }  ={\begin{vmatrix} - 3& 3 \\2&3 \end{vmatrix} } = - 15 \\ A _{32} = -  {\begin{vmatrix} a _{11} & a _{13}  \\ a_{ 21} & a _{ 23}  \end{vmatrix} }  = - {\begin{vmatrix} 2& 3 \\2&3 \end{vmatrix} } = 0 \\ A _{33} = {\begin{vmatrix} a _{11} & a _{12}  \\ a_{ 21} & a _{ 22}  \end{vmatrix} }  ={\begin{vmatrix} 2&  - 3 \\2&2\end{vmatrix} } = 10

\sf Therefore,

 adj A _{ }  = {\begin{bmatrix} A _{11 } & A _{ 12} & A _{ 13} \\A _{21} & A _{22 } & A _{ 23}\\A _{ 31}  &A _{ 32} & A _{ 33}  \end{bmatrix} } {}^{ {}^{ {}^{ {}^{ {}^{ {}^{ ^{t} } } } } } }  \\  \\adj A _{ }  = {\begin{bmatrix} 2& 13&  - 10 \\  - 12&  - 13 &  - 5\\ - 15 &0 & 10\end{bmatrix} } {}^{ {}^{ {}^{ {}^{ {}^{ {}^{ ^{t} } } } } } }  \\  \\adj A _{ }  = {\begin{bmatrix} 2&  -12&  - 15 \\ 13&  - 13 & 0\\ - 10& - 5 & 10\end{bmatrix} }

\sf Moreover,

 |A|=2(-4+6)- (-3)(-4-9)+3(-4 -6) =-65 ≠ 0

\sf Hence,

A {}^{ - 1}  =  \frac{1}{ |A| }  (adj A) \\  \\ A {}^{ - 1}  =  -  \frac{ 1}{65}{\begin{bmatrix} 2&  -12&  - 15 \\  13&  - 13 & 0\\ - 10& - 5 & 10\end{bmatrix} } \\  \\ A {}^{ - 1}  =  \frac{ 1}{65}{\begin{bmatrix} -  2&  12& 15 \\ - 13& 13 & 0\\ 10& 5 &  - 10\end{bmatrix} }


Anonymous: Fabulous!
Similar questions