#QualityQuestion
@Trigonometry
Find the maximum value of 5cosA + 12sinA + 12.
Answers
Answered by
5
Answer:
Solution
5cosθ+12sinθ
52+122−−−−−−−√{552+122−−−−−−−√cosθ+1252+122−−−−−−−√sinθ}
sinϕ=552+122−−−−−−−√=513
cosϕ=1213=1252+122−−−−−−−√
putting it in the equation
13{sinϕcosθ+cosϕsonθ}
=13sin(θ+ϕ)
=12+13sin(θ+ϕ)
occurs when sin(θ+ϕ)=1
so,`12 + 13 xx1 = 121+ 13 = 25
Answer
Answered by
48
Let the Function 5cosA + 12sinA + 12 = f(A).
-------------------------------
▪ Given :-
- f(A) = 5cosA + 12sinA + 12.
-------------------------------
▪ To Find :-
- Maximum Value of f(A).
-------------------------------
▪ Concept To Mind :-
- The maximum and minimum value of any function at the the point where First Derivative is Zero.
- for maximum value the sign of second derivative should be negative.
-------------------------------
▪ Solution :-
》We Have ,
Now,
Now ,
So ,
-------------------------------
Similar questions