Math, asked by HelpfulQuestioner, 1 month ago

#QualityQuestion
@Trigonometry

Find the maximum value of 5cosA + 12sinA + 12.​

Answers

Answered by arshpreetkaur0001
5

Answer:

Solution

5cosθ+12sinθ

52+122−−−−−−−√{552+122−−−−−−−√cosθ+1252+122−−−−−−−√sinθ}

sinϕ=552+122−−−−−−−√=513

cosϕ=1213=1252+122−−−−−−−√

putting it in the equation

13{sinϕcosθ+cosϕsonθ}

=13sin(θ+ϕ)

=12+13sin(θ+ϕ)

occurs when sin(θ+ϕ)=1

so,`12 + 13 xx1 = 121+ 13 = 25

Answer

Answered by SparklingBoy
48

Let the Function 5cosA + 12sinA + 12 = f(A).

-------------------------------

▪ Given :-

  • f(A) = 5cosA + 12sinA + 12.

-------------------------------

▪ To Find :-

  • Maximum Value of f(A).

-------------------------------

▪ Concept To Mind :-

  • The maximum and minimum value of any function at the the point where First Derivative is Zero.

  • for maximum value the sign of second derivative should be negative.

-------------------------------

▪ Solution :-

We Have ,

  \large{f(A)} =   5 \cos A + 12 \sin A + 12

 \bigstar \:   \underline{ \pmb{ \mathfrak{ Differentiating   \:  \: both \:  \:  sides \:  \:   \text{w}.r.t   \:  \:  \text{A} }}}

 \large :  \longmapsto f'(A) =  - 5 \sin A + 12 \cos A

 \bigstar \:   \underline{ \pmb{ \mathfrak{ Differentiating   \:  \: both \:  \:  sides \:  \:   \text{w}.r.t   \:  \:  \text{A} }}}

f''(A) =  - 5 \cos A - 12 \sin A

Now,

\large \bigstar \:   \underline{ \pmb{ \mathfrak{ For \:  \:  Maxima  \:  \: and \:  \:  Minima   : }}} -

f'(A) = 0 \\  \\ :  \longmapsto - 5 \sin A    + 12\cos A = 0 \\  \\  :  \longmapsto12 \cos A =  5 \sin A \\  \\ \large \pink{  :  \longmapsto  \boxed{\tan A =  \frac{12}{5} }}\bf\:\:\:\:----(1)

 :  \longmapsto A =  \tan {}^{ - 1}  \bigg( \dfrac{12}{5}  \bigg)

 \large \bigstar \:   \underline{ \pmb{ \mathfrak{ From  \:  \: (1) :  }}} -

 \tan A =  \dfrac{12}{5}  \\  \\  \sec {}^{2}  A = 1 +  \frac{144}{25}  =  \frac{169}{25}  \\  \\  :  \longmapsto \sec A =  \frac{13}{5}  \\  \\  :  \longmapsto \boxed{ \cos A =  \frac{5}{13}}  \\  \\  :  \longmapsto  \sin A =  \sqrt{1 -  \frac{25}{169} }  =   \sqrt{ \frac{144}{169} }  \\  \\  :  \longmapsto  \boxed{\sin A =  \frac{12}{13} }

Now ,

f''( A) =  - 5 \times  \dfrac{5}{13}  - 12  \times \frac{12}{13}  \\  \\  =  \bf - ve

 \large\bigstar \:  { \pmb{ \mathfrak{  \text{H}ence \:  \:  f( \text{A}) \:  \:  is \:  \:  maximum \:  \:  at  }}}  \\  \\    \large\bf A =  \mathfrak{ { \tan}^{ - 1}  \frac{12}{5} }

So ,

f( A)_{max}   = 5 \times  \frac{5}{13}  + 12 \times  \frac{12}{13} + 12 \\  \\  =  \frac{25 + 144}{13}  + 12 \\  \\  =  \frac{169}{13}   + 12 \\  \\  = 13 + 12 \\  \\ \Large\purple{ :\longmapsto  \underline {\boxed{{\bf f(A)_{maximum}=25} }}}

 \Large \red{\mathfrak{  \text{W}hich \:   \: is  \:  \: the  \:  \: required} }\\ \huge \red{\mathfrak{ \text{ A}nswer.}}

-------------------------------

Similar questions