Math, asked by HelpfulQuestioner, 2 months ago

#QualityQuestion
@Trigonometry

If  \rm{x + y + z = \pi} prove the trigonometric identity;
 \rm{ cot\frac{x}{2} + cot \frac{y}{2}   + cotg \frac{z}{2}  = cot \frac{x}{2} cot \frac{y}{2} cot \frac{z}{2}  }

Answers

Answered by senboni123456
16

Step-by-step explanation:

We have,

x + y + z = \pi

 \implies \:  \frac{x + y  + z }{2}=  \frac{\pi}{2} \\

 \implies \:  \frac{x}{2}  +  \frac{y}{2}  +  \frac{z}{2}  =   \frac{\pi}{2}  \\

 \implies \:  \frac{x}{2}  +  \frac{y}{2}   =  \frac{\pi}{2} -    \frac{z}{2}   \\

 \implies \:   \tan \bigg(\frac{x}{2}  +  \frac{y}{2} \bigg)   = \tan \bigg(  \frac{\pi}{2} -    \frac{z}{2}   \bigg)  \\

 \implies \:  \frac{ \tan( \frac{x}{2} ) +  \tan( \frac{y}{2} )  }{1 -  \tan( \frac{x}{2} ) \tan( \frac{y}{2} )  } =  \cot \bigg( \frac{z}{2}  \bigg)   \\

 \implies \:  \frac{  \frac{1}{\cot( \frac{x}{2} ) }+ \frac{1}{  \cot( \frac{y}{2} )}  }{1 -  \frac{1}{ \cot( \frac{x}{2} ) \cot( \frac{y}{2} ) } } =  \cot \bigg( \frac{z}{2}  \bigg)   \\

 \implies \:  \frac{ \cot( \frac{x}{2} ) +  \cot( \frac{y}{2} )  }{  \cot( \frac{x}{2} ) \cot( \frac{y}{2} ) - 1  } =  \cot \bigg( \frac{z}{2}  \bigg)   \\

 \implies \:   \cot \bigg( \frac{x}{2}  \bigg) +  \cot \bigg( \frac{y}{2}  \bigg)  =   \cot \bigg( \frac{x}{2}  \bigg) \cot \bigg( \frac{y}{2} \bigg )   \cot \bigg( \frac{z}{2}  \bigg)   - \cot \bigg( \frac{z}{2}  \bigg)    \\

 \implies \:   \cot \bigg( \frac{x}{2}  \bigg) +  \cot \bigg( \frac{y}{2}  \bigg) + \cot \bigg( \frac{z}{2}  \bigg) =   \cot \bigg( \frac{x}{2}  \bigg) \cot \bigg( \frac{y}{2} \bigg )   \cot \bigg( \frac{z}{2}  \bigg)       \\

Answered by mathdude500
13

\large\underline{\sf{Solution-}}

Given that

 \red{\rm :\longmapsto\:x + y + z = \pi \: }

 \red{\rm :\longmapsto\:x + y = \pi \: - z }

On dividing each term by 2, we get

\rm :\longmapsto\:\dfrac{x}{2}  + \dfrac{y}{2}  = \dfrac{\pi}{2}   -  \dfrac{z}{2}

So,

\rm :\longmapsto\: cot\bigg(\dfrac{x}{2}  + \dfrac{y}{2} \bigg)  =cot\bigg( \dfrac{\pi}{2}   -  \dfrac{z}{2}\bigg)

We know that,

 \boxed{ \sf{cot\bigg(\dfrac{\pi}{2} - x \bigg)  = tanx}}

and

 \boxed{ \sf{cot(x + y) =  \frac{cotxcoty - 1}{coty + cotx}}}

So, using these Identities, we get

\rm :\longmapsto\:\dfrac{cot\bigg(\dfrac{x}{2} \bigg)cot\bigg(\dfrac{y}{2} \bigg) - 1 }{cot\bigg(\dfrac{x}{2} \bigg) + cot\bigg(\dfrac{y}{2} \bigg)} = tan\bigg(\dfrac{z}{2} \bigg)

\rm :\longmapsto\:\dfrac{cot\bigg(\dfrac{x}{2} \bigg)cot\bigg(\dfrac{y}{2} \bigg) - 1 }{cot\bigg(\dfrac{x}{2} \bigg) + cot\bigg(\dfrac{y}{2} \bigg)} = \dfrac{1}{cot\bigg(\dfrac{z}{2} \bigg)}

On cross multiplication, we get

\rm :\longmapsto\:cot\bigg(\dfrac{x}{2} \bigg)cot\bigg(\dfrac{y}{2} \bigg)cot\bigg(\dfrac{z}{2} \bigg) - cot\bigg(\dfrac{z}{2} \bigg) = cot\bigg(\dfrac{x}{2} \bigg) + cot\bigg(\dfrac{y}{2} \bigg)

On transposition, we get

\rm :\longmapsto\:cot\bigg(\dfrac{x}{2} \bigg)cot\bigg(\dfrac{y}{2} \bigg)cot\bigg(\dfrac{z}{2} \bigg) =  cot\bigg(\dfrac{z}{2} \bigg) +  cot\bigg(\dfrac{x}{2} \bigg) + cot\bigg(\dfrac{y}{2} \bigg)

can be rewritten as

\rm :\longmapsto\:cot\bigg(\dfrac{x}{2} \bigg) +  cot\bigg(\dfrac{y}{2} \bigg) + cot\bigg(\dfrac{z}{2} \bigg) = cot\bigg(\dfrac{x}{2} \bigg)cot\bigg(\dfrac{y}{2} \bigg)cot\bigg(\dfrac{z}{2} \bigg)

Hence, Proved

Additional Information :-

 \boxed{ \sf{sin(x + y) = sinxcosy + sinycosx}}

 \boxed{ \sf{sin(x  -  y) = sinxcosy  -  sinycosx}}

 \boxed{ \sf{cos(x + y) = cosxcosy - sinxsiny}}

 \boxed{ \sf{cos(x  -  y) = cosxcosy  +  sinxsiny}}

 \boxed{ \sf{tan(x + y) =  \frac{tanx + tany}{1 - tanx \: tany} }}

 \boxed{ \sf{tan(x  -  y) =  \frac{tanx  -  tany}{1  +  tanx \: tany} }}

 \boxed{ \sf{ {sin}^{2}x -  {sin}^{2}y = sin(x + y)sin(x - y)}}

 \boxed{ \sf{ {cos}^{2}y -  {cos}^{2}x = sin(x + y)sin(x - y)}}

Similar questions