#QualityQuestion
@Trigonometry
(1 + cos(x) + cos(2x)) / (sin(x) + sin(2x)) = cot(x)
Answers
Answered by
77
Answer:
1+cos(2x)+cos(x)/sin(x)+2sin(x)+cos(x)=cos(x)/sin(x) 2cossquare X+ cosx/ sinx( 1+2 cosx)=cosx/sinx. cosx(2cosx+1)/ sinx (1+2cosx)= cosx/sinx. cosx/ sinx = cosx/ sinx. = o
Answered by
108
Simplifying numerator:
= 1 + cosx + cos2x
= 1 + cosx + 2cos²x - 1
= cosx(1 + 2cosx)
Simplifying denominator:
=> sinx + sin2x
=> sinx + 2sinxcosx
=> sinx(1 + 2cosx)
Therefore,
=> (1 + cosx + cos2x)/(sinx + sin2x)
=> cosx(1 + 2cosx) / sinx(1 + 2cosx)
=> cosx/sinx
=> cotx
Using,
cos2x = 2cos²x - 1 ; sin2x = 2sinxcosx
Similar questions