#QualityQuestion
@Trigonometry
Answers
Answered by
7
~Solution :-
- Here, we can,
- Hence, 2x is valued to .
— BrainlyROME —
Answered by
1
Answer:
~Solution :-
Here, we can,
\sf{tan (cotx) = cot (tanx) }tan(cotx)=cot(tanx)
\begin{gathered} \to \sf{ tan (cotx) = tan ( \frac{π }{2 } - tanx)} \\ \end{gathered}
→tan(cotx)=tan(
2
π
−tanx)
\begin{gathered} \to \sf{cotx = nπ + \frac{π}{ 2} - tanx} \\ \end{gathered}
→cotx=nπ+
2
π
−tanx
\begin{gathered} \to \sf{⇒ cotx + tanx = nπ + \frac{π}{ 2}} \\ \end{gathered}
→⇒cotx+tanx=nπ+
2
π
\begin{gathered} \to \sf{2 sin2x = nπ + \frac{ π }{ 2}} \\ \end{gathered}
→2sin2x=nπ+
2
π
\begin{gathered} \to \sf{ sin2x = [ \frac{2}{ nπ }+ { \frac{π }{2}}]} \\ \end{gathered}
→sin2x=[
nπ
2
+
2
π
]
\begin{gathered} < /p > < p > \implies \bf \red{= \frac{ 4 }{ {(2n + 1) π}}} \\ \end{gathered}
Similar questions