Math, asked by HelpfulQuestioner, 21 days ago

#QualityQuestion
@Trigonometry

 \sf{If~ tan~ (cot~ x) ~= ~cot~ (tan ~x), ~then~ sin ~2x ~is?}

Answers

Answered by BrainlyROME
7

~Solution :-

  • Here, we can,

 \sf{tan (cotx) = cot (tanx) }

 \to \sf{ tan (cotx) = tan ( \frac{π }{2 } -  tanx)} \\

 \to  \sf{cotx = nπ +  \frac{π}{  2}  -  tanx} \\

 \to \sf{⇒ cotx + tanx = nπ +  \frac{π}{  2}} \\

  \to \sf{2 sin2x = nπ + \frac{ π }{ 2}} \\

 \to \sf{ sin2x =  [ \frac{2}{  nπ }+ { \frac{π }{2}}]} \\

</p><p> \implies \bf \red{= \frac{ 4 }{ {(2n + 1) π}}} \\

  • Hence, 2x is valued to   \sf { \frac{ 4 }{ {(2n + 1) π}}}  .

 \\ \\

— BrainlyROME —

Answered by shardakuknaa
1

Answer:

~Solution :-

Here, we can,

\sf{tan (cotx) = cot (tanx) }tan(cotx)=cot(tanx)

\begin{gathered} \to \sf{ tan (cotx) = tan ( \frac{π }{2 } - tanx)} \\ \end{gathered}

→tan(cotx)=tan(

2

π

−tanx)

\begin{gathered} \to \sf{cotx = nπ + \frac{π}{ 2} - tanx} \\ \end{gathered}

→cotx=nπ+

2

π

−tanx

\begin{gathered} \to \sf{⇒ cotx + tanx = nπ + \frac{π}{ 2}} \\ \end{gathered}

→⇒cotx+tanx=nπ+

2

π

\begin{gathered} \to \sf{2 sin2x = nπ + \frac{ π }{ 2}} \\ \end{gathered}

→2sin2x=nπ+

2

π

\begin{gathered} \to \sf{ sin2x = [ \frac{2}{ nπ }+ { \frac{π }{2}}]} \\ \end{gathered}

→sin2x=[

2

+

2

π

]

\begin{gathered} < /p > < p > \implies \bf \red{= \frac{ 4 }{ {(2n + 1) π}}} \\ \end{gathered}

Similar questions