Math, asked by HelpfulQuestioner, 1 month ago

#QualityQuestion
@Trigonometry


 \tt{Prove ~the~ identity ~:}
tan²(x) - sin²(x) = tan²(x) sin²(x)​

Answers

Answered by BrainlyROME
13

~Solution :-

 \large \mathfrak{LHS :}

 \sf{ta {n}^{2} (x) - si {n}^{2} (x) = si {n}^{2} (x) / co {s}^{2} (x) - si {n}^{2} (x)}

 \to \sf{    \frac{[si {n}^{2} (x) - co {s}^{2} (x) si {n}^{2} (x) ] } {co {s}^{2} (x)}} \\

 \to \sf{ \frac{ si {n}^{2} (x) [ 1 - co {s}^{2} (x) ] }{ co {s}^{2} (x)}} \\

 \to \sf{ \frac{si {n}^{2} (x) si {n}^{2} (x)}{  co {s}^{2} (x)}} \\

 \implies \bf \red{ si {n}^{2} (x) ta {n}^{2} (x)}

 \large \mathfrak{ : RHS}

 \\ \\

— BrainlyROME —

Answered by Anonymous
37

Assuming tan²(x) - sin²(x) = tan²(x)sin²(x),

start off by rewriting tan²(x) into it's sin(x) and cos (x) components.

\frac{{\sin}^{2}(x)}{{\cos}^{2}(x)} - {\sin}^{2}(x)  \\

Finding a common denominator

\frac{{\sin}^{2}(x)}{{\cos}^{2}(x)}\times\frac{1}{1} - {\sin}^{2}(x)\times\frac{{\cos}^{2}(x)}{{\cos}^{2}(x)}\rightarrow\frac{{\sin}^{2}(x)}{{\cos}^{2}(x)} - \frac{{\sin}^{2}(x){\cos}^{2}(x)}{{\cos}^{2}(x)}  \\

Combine in to a single fraction and factor out a {\sin}^{2}(x)  \\  .

\frac{{\sin}^{2}(x) - {\sin}^{2}(x){\cos}^{2}(x)}{{\cos}^{2}(x)}\rightarrow {\sin}^{2}(x)\times\frac{{\sin}^{2}(x)}{{\cos}^{2}(x)} \\

Finally write

{\sin}^{2}(x)\times\frac{{\sin}^{2}(x)}{{\cos}^{2}(x)}\rightarrow{\sin}^{2}(x){\tan}^{2}(x)  \\

  \\

#NAWABZAADI

Similar questions