Math, asked by QualityQuestion, 3 days ago

@QualityQuestion
 \\
Prove the Identity :-
4 sin(x) cos(x) = $\sf\dfrac{sin(4x)}{ cos(2x)}$​

Answers

Answered by MrImpeccable
30

ANSWER:

To Prove:

  • 4 sin(x) cos(x) = sin(4x)/cos(2x)

Proof:

We need to prove that,

\implies 4\sin x\cos x = \dfrac{\sin 4x}{\cos 2x}

Taking LHS,

\implies 4\sin x\cos x

We can write 4 as, 2 * 2.

So,

\implies 2\times2\sin x\cos x

\implies 2(2\sin x\cos x)

We know that,

\hookrightarrow 2\sin\theta\cos\theta=\sin2\theta

So,

\implies 2(2\sin x\cos x)

\implies 2\sin2x

Multiplying and dividing by cos(2x)

\implies 2\sin2x\times\dfrac{\cos2x}{\cos2x}

\implies \dfrac{2\sin2x\cos2x}{\cos2x}

As,

\hookrightarrow 2\sin\theta\cos\theta=\sin2\theta

So,

\implies \dfrac{2\sin2x\cos2x}{\cos2x}

\implies \dfrac{\sin(2*2x)}{\cos2x}

\implies\bf\dfrac{sin4x}{cos2x}=RHS

As, LHS = RHS

HENCE PROVED!!

Similar questions