Math, asked by QualityQuestion, 1 day ago

@QualityQuestion
\\
Sides of a triangle are in the ratio of $\rm 12:17:25$, and, its perimeter is 540 cm. Find its $\rm area$.
 \\

Answers

Answered by mathdude500
40

\large\underline{\sf{Solution-}}

Given that,

  • Sides of a triangle are in the ratio of 12 : 17 : 25

Let assume that

Sides of triangle is represented as a, b, c respectively.

So,

  • a = 12x

  • b = 17x

  • c = 25x

Further, given that

Perimeter of triangle = 540 cm

We know, Perimeter of a triangle is defined as sum of a three sides.

So,

\rm :\longmapsto\:12x + 17x + 25x = 540

\rm :\longmapsto\:54x = 540

\bf\implies \:x = 10

Thus,

  • a = 120 cm

  • b = 170 cm

  • c = 250 cm

Now,

\underline{\boxed{\sf Semi  \: Perimeter \ of \ a \ triangle,s= \dfrac{1}{2} (a+b+c)}}

\rm \implies\:s = \dfrac{540}{2}  = 270 \: cm

Now,

\underline{\boxed{\bf Area \ of \ triangle=\sqrt{s(s-a)(s-b)(s-c)} }}

So, on substituting the values, we get

\red{\rm :\longmapsto\:Area \: of \: triangle}

\rm \:  =  \:  \sqrt{270(270 - 120)(270 - 170)(270 - 250)}

\rm \:  =  \:  \sqrt{270(150)(100)(20)}

\rm \:  =  \: 100 \sqrt{27(15)(10)(2)}

\rm \:  =  \: 100 \sqrt{(3 \times 3 \times 3)(5 \times 3)(5 \times 2)(2)}

\rm \:  =  \: 100  \times 2 \times 3 \times 3 \times 5

\rm \:  =  \: 9000 \:  {cm}^{2}

Answered by ItzzTwinklingStar
163

Given :

  • Ratio of sides of triangle = 12 : 17 : 25

  • Perimeter of triangle = 540 cm

To Find :

  • Area of triangle = ?

Solution :

  • As, sides are in ratio of 12 : 17 : 25

So,

  • Let first side, a = 12x

  • Second side, b = 17x

  • Third side, c = 25x

\\

Now, we are given perimeter of triangle = 540 cm.

\\

We know that perimeter of triangle is the sum of all sides of a triangle.

 :  \implies \bf \: Perimeter = a + b + c\\

\\

By filling values :

:  \implies \sf \: 540 cm = 12x + 17x + 25x\\\\

 :  \implies \sf\: 540 \:  cm = 54 \: x\\\\

 :  \implies \sf \: x = \sf \dfrac{540}{54}  \\\\

 :  \implies \sf \: x = 10 cm\\\\

\\

Therefore,

\\

  • First side, a = 12x = 12 × 10 cm = 120 cm.

  • Second side, b = 17x = 17 × 10 cm = 170 cm.

  • Third side, c = 25x = 25 × 10 cm = 250 cm.

\\

Now, we have to find area of triangle.

To find it, let's use Heron's formula :

According to Heron's formula :

\\

 \underline{\boxed{ \bf{ \red{ Area \: of \: triangle = \sqrt{s(s-a)(s-b)(s-c)}}}}}  \:  \pink \bigstar\\\\

Here,

\sf \:  s \:  \: is \:  \: Semi-perimeter = \dfrac{Perimeter}{2} \\\\

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \sf \: = \dfrac{540 \: cm}{2} \\\\

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \sf \: = 270 \: cm \\\\

  • a is first side = 120 cm

  • b is second side = 170 cm

  • c is third side = 250 cm

\\

So, by filling values, we have :

\sf: \implies Area \: of \: triangle = \sqrt{270 \: cm (270 \: cm - 120 \: cm)(270 \: cm - 170 \: cm)(270 \: cm - 250 \: cm)}\\\\

\sf: \implies Area \: of \: triangle = \sqrt{270 \: cm (150 \: cm)(100 \: cm)(20 \: cm)}\\\\

\sf : \implies Area \: of \: triangle = \sqrt{270 \: cm \times 150 \: cm \times 100 \: cm \times 20 \: cm}\\\\

 \sf: \implies Area \: of \: triangle = \sqrt{(270 \times 150 \times 100 \times 20) cm^{2} \times cm^{2}}\\\\

\sf: \implies Area \: of \: triangle = \sqrt{(3 \times 3 \times 3 \times 10 \times 3 \times 5 \times 10 \times 10 \times 10 \times 2 \times 2 \times 5) cm^{2} \times cm^{2}}\\\\

\sf: \implies Area \: of \: triangle = \sqrt{(\underbrace{3 \times 3} \times \underbrace{3 \times 3} \times \underbrace{5 \times 5} \times \underbrace{10 \times 10} \times \underbrace{10 \times 10} \times \underbrace{2 \times 2} ) \underbrace{cm^{2} \times cm^{2}}}\\\\

\tt: \implies Area \: of \: triangle = (3 \times 3 \times 5 \times 10 \times 10 \times 2) cm^{2}\\\\

\sf \: : \implies Area \: of \: triangle = 9000 cm^{2}\\\\

Hence, Area of triangle is 9000 cm².

Similar questions