Math, asked by jinigamer66, 1 month ago

qudratic equation sove​

Attachments:

Answers

Answered by MysticSohamS
1

Answer:

hey here is your answer

pls mark it as brainliest

Step-by-step explanation:

to \: solve \: for =  \\ x \: (in \: terms \: of \: a \: and \: b) \\  \\ so \: here \: given \: quadratic \: equation \:  \: is \\  \\  \frac{b}{x - a}  +  \frac{a}{x - b}  = 2 \\  \\  \frac{b(x - b) + a(x - a)}{(x - a)(x - b)}  = 2 \\  \\   \\  bx - b {}^{2}  + ax - a {}^{2}  = 2(x {}^{2}  -   bx - ax + a b) \\  \\  = bx + ax - b {}^{2}  - a {}^{2}  = 2x {}^{2}  - 2bx - 2ax + 2ab \\  \\ bx + 2bx + ax + 2ax = 2x {}^{2}  + a {}^{2}  + b {}^{2}  + 2ab \\  \\ 2x {}^{2}  + (a + b) {}^{2}  = 3bx + 3ax \\  \\ 2x {}^{2}  - 3 a x - 3bx + (a + b) {}^{2} = 0  \\  \\  = 2x {}^{2}  - 3(a + b)x + (a + b) {}^{2}  = 0

comparing \: this \: quadratic \: equation \\ with \:  \: ax {}^{2}  + bx + c = 0 \\ we \: have \\  \\ a = 2  \\ \\ b =  - 3(a + b) \\  \\ c = (a + b) {}^{2}

so \: applying \: now \\   \\ Δ = b {}^{2}  - 4ac \\  \\  = ( - 3(a + b)) {}^{2}  - 4 \times 2 \times (a + b) {}^{2}  \\  \\  = 9(a + b) {}^{2}  - 8(a + b) {}^{2}  \\  \\  = (a + b) {}^{2} (9 - 8) \\  \\  = (a + b) {}^{2} (1) \\  \\  Δ=( a + b) {}^{2}

so \: now \: by \: formula \: method \\ we \: get \\  \\ x =  \frac{ - b \: ± \:  \sqrt{b {}^{2}  - 4ac} }{2a}  \\  \\  =  \frac{ - ( - 3(a + b) \: ± \:  \sqrt{(a + b) {}^{2} } }{(2 \times 2)}  \\  \\  \\  =  \frac{3(a + b) \:± \: (a + b) }{4}  \\  \\  =  \frac{(a + b)(3 \:± \: 1) }{4}  \\  \\  \\ x =  \frac{(a + b)(3 + 1)}{4}  \:  \: or \:  \: x =  \frac{(a + b)(3 - 1)}{4}  \\  \\  \\  =  \frac{(a + b)(4)}{4}  \:  \: or \:  \:  =  \frac{(a + b)(2)}{4}  \\  \\  \\ x = a + b \:  \:  \: or \:  \:  \: x =  \frac{a + b}{2}

Similar questions