Physics, asked by ItzTogetic, 9 months ago

Que. A force F = -k/x^2 (x≠0) acts on a partical in a x-direction. Find the word done by this force in displacing the particle from x = +a to x = +2a. Here k is a positive constant.

Pls give correct answer-​

Answers

Answered by Sharad001
106

Answer :-

\implies  \boxed{\sf{ w =  \frac{ - k}{2a \: }  \: }}  \: \bf{ N-m } \:

To Find :-

→ Work done by given force .

Explanation :-

Given that

 \implies \:  \sf{F =  \frac{ - k}{ {x}^{2} } } \:  \:  \tt{N} \\

it displacing +a to +2a

We know that

If force is variable then work done is -

 \implies \boxed{ \sf{w =  \int_{initial}^{final} \:  \: f \: dx \:} } \\  \\  \implies \sf{w  =  \int_{a}^{2a} \:  \:  \frac{ - k}{ {x}^{2} }  \: dx \: } \\  \\  \implies \sf{ w =  - k \: \int_{a}^{2a} \:   {x}^{ - 2}  \: dx \: } \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \because  \boxed{\sf{ \int \:  {x}^{n} dx =  \frac{ {x}^{n + 1} }{n + 1} }} \\  \\  \implies \sf{ w =  - k \: \bigg[  \frac{ {x}^{ - 2 + 1} }{ - 2 + 1} \bigg]_{a}^{2a} \: } \\  \\  \implies \sf{w =  \cancel{ -} k \: \bigg[  \frac{ {x}^{  - 1} }{  \cancel{ - }1} \bigg]_{a}^{2a}} \:  \\  \\  \implies \sf{ w = \:k \:  \bigg[  \frac{ 1 }{ x} \bigg]_{a}^{2a}} \\

taking limit

 \implies \sf{w = k \: \bigg[  \frac{ 1 }{ 2a} -  \frac{1}{a}  \bigg] \: } \\  \\  \implies \sf{w = k \:  \frac{ - 1}{2a} } \\  \\  \implies  \boxed{\sf{ w =  \frac{ - k}{2a \: }  \: }}  \: \bf{ N-m }

Answered by Saby123
20

 \tt{\huge{\orange {------------- }}} S.D

QUESTION :

Que. A force F = -k/x^2 (x≠0) acts on a partical in a x-direction. Find the word done by this force in displacing the particle from x = +a to x = +2a. Here k is a positive constant.

Que. A force F = -k/x^2 (x≠0) acts on a partical in a x-direction. Find the word done by this force in displacing the particle from x = +a to x = +2a. Here k is a positive constant.Pls give correct answer-

ANSWER :

Work done by this force is { - k } / { 2 a } N m.

CONCEPT USED :

Force acting on a Spring i.e, Spring Constant.

SOLUTION :

We have the following information given that F = [ - k / { x } ^ 2 ] Newton.

This force is displacing the particle, from X = + a to X = + 2 a.

We know that :

 Work \: Done  = \int_{a}^{2a} \: \: \dfrac{-k }{ { x} ^ { 2 } }\: dx

As :

 \int \: {x}^{n} dx = \frac{ {x}^{n + 1} }{n + 1}

Using the above identity, we can state that :

  Work \: Done  = - k \: \frac{ {x}^{ - 2 + 1} }{ - 2 + 1_{a}^{2a}  }

Now we need to cancel K

=>

 Work \: Done  = k \frac{1}{2a} - \frac{1}{a}</p><p>

This gives us our final answer :

Work done by this force is { - k } / { 2 a } N m..... [ A ]

Similar questions