Math, asked by pujamehta125, 8 months ago

que) A real image 2/3 of size of an object is formed by a convex lens when the object is at a distance of 12 cm from it find the focal length of the lens​

Answers

Answered by Anonymous
25

\mathfrak{\bf{\underline{\underline{GIVEN \ :}}}}

ㅤㅤㅤㅤㅤm  =  \frac{2}{3}  \\ ㅤㅤㅤㅤㅤㅤㅤv =  + 12cm

\mathfrak{\bf{\underline{\underline{SOLUTION \ :}}}}

 \implies \: m =  \frac{v}{u}  \\  \:  \\ \implies m =  -  \frac{2}{3}  \\  \:  \\ \implies m = 12 u \\ \:  \:  \:  \\  \:  \:  \implies- 2u = 36 \\  \\ \:  \:  \:  \:  \:  \:  \:  \implies \:  u =  - 18 \: cm \\  \\

BY LENS FORMULA :-

 \impliesㅤㅤㅤㅤㅤㅤㅤ \frac{1}{f}  =  \frac{1}{v}  -  \frac{1}{u} \\

 \implies \: ㅤㅤㅤㅤㅤㅤ \:  \frac{1}{f}  =  \frac{1}{12}  -  \frac{1}{ (-18) }  \\

\implies \: ㅤㅤㅤㅤㅤㅤ \frac{1}{f}  =  \frac{1}{12}  +  \frac{1}{18}  \\

 \implies \:  ㅤㅤㅤㅤㅤㅤ\frac{1}{f}  =  \frac{3}{36}  +  \frac{2}{36}  \\

 \implies \:  ㅤㅤㅤㅤㅤㅤ\frac{1}{f}  =  \frac{5}{36}  \\

 \implies \:ㅤㅤㅤㅤㅤㅤㅤ f =  \frac{36}{5}

 \implies \:ㅤㅤㅤㅤㅤ \boxed{\boxed{ f    \approx 7.2 \: cm}}

hєncє, thє fσcαl lєnght íѕ 7.2 cm

\mathfrak{\bf{\underline{\underline{EXTRA \ INFORMATION \ :-}}}}

 \implies тhє ímαgє fσrmєd íѕ rєαl. ( cσnvєх lєnѕ fσrmѕ dímíníѕhєd rєαl ímαgє. )

Answered by dilawarhussainkhan26
3

Answer:

How you can do upon in mobile please tell me

Similar questions