Math, asked by XxItzzMrUnknownxX, 4 days ago

Que :-

(cos ∅ × cosec theta - sin ∅ × sec theta) / (cos ∅ + sin ∅) = cosec ∅ - sec ∅​

Answers

Answered by MysticSohamS
1

Answer:

your answer is as follows

pls mark it as brainliest

Step-by-step explanation:

to \: prove :  \\  \frac{cosθ \times cosecθ \:  - sin  θ \times secθ}{cosθ + sinθ}  = cosecθ - secθ \\  \\ LHS =  \frac{cosθ \times cosecθ - sinθ \times secθ}{cosθ + sinθ}  \\  \\  =  \frac{cosθ \times  \frac{1}{sinθ} - sinθ \times  \frac{1}{cosθ}  }{cosθ + sinθ}  \\  \\  =  \frac{ \frac{cosθ}{sinθ}  -  \frac{sinθ}{cosθ} }{cosθ + sinθ}  \\  \\  =  \frac{cos {}^{2} θ - sin {}^{2}θ }{sinθ.cosθ(cosθ + sinθ)}  \\  \\  =  \frac{(cosθ + sinθ)(cosθ - sinθ)}{sinθ.cosθ(cosθ + sinθ)}  \\  \\  =  \frac{cosθ - sinθ}{sinθ.cosθ}  \\  \\  =  \frac{cosθ}{sinθ.cosθ}  -  \frac{sinθ}{sinθ.cosθ}  \\  \\  =  \frac{1}{sinθ}  -  \frac{1}{cosθ}  \\  \\  = cosecθ - secθ \\  \\  = RHS

Similar questions