Math, asked by Anonymous, 9 months ago

Que=> Solve inequalitie  \sqrt{x}  - 3 \leqslant  \frac{2}{ \sqrt{x}  - 2}

Answers

Answered by AlluringNightingale
4

Answer:

x € (-∞,1] U (4,16]

Attachments:
Answered by JanviMalhan
7

SOLUTION:

 \sf \: ( \sqrt{x}  -3) -  \frac{2}{ \sqrt{x} - 2 }  \leqslant 0 \\  \\ \sf \frac{ ( \sqrt{x}  - 3)( \sqrt{x}  - 2) - 2}{ \sqrt{x}  - 2} \:   \leqslant 0 \\  \\ \sf  \frac{x - 5 \sqrt{x} + 4 }{ \sqrt{x} - 2 }  \leqslant 0 \\  \\  \sf \sqrt{x} ( \sqrt{x}  - 1) - 4( \sqrt{x}  - 1) \leqslant 0 \\  \\ \sf \frac{( \sqrt{x}  - 1)( \sqrt{x}  - 4)}{ \sqrt{x}  - 2} \:  = 0 \\  \\ \sf \: if \:  \sqrt{x}  - 1 = 0 \\  \sf \:  \sqrt{x}  = 1 \\  \sf \: x =  {1}^{2}  = 1 \ \  \\  \\  \sf \: if \:  \sqrt{x}  - 4 = 0 \\  \sf \: x = 16 \\  \\  \\  \sf \: if \:  \sqrt{x}  - 2 = 0 \\  \sf \:  \sqrt{x}  = 2 \\  \sf \: x =  {2}^{2}  = 4

Similar questions