Math, asked by nk5306620, 6 months ago

Que Height of a right circular cone is them. If its volume is a
1570 cm find the radius of its base. (π
= 3.14)​

Answers

Answered by Butterflysly678
3

Given:-

  • The height of cone is 15 cm.
  • Its volume is 1570 cm.

To Find:-

  • Radius of it's base?

Solution:-

Volume of cone

 \dag { \boxed{ \underline{ \pink{⅓ \times   \rm \pi \times  {r}^{2} \times  h}}}}

Where,

  • r = radius
  • h = height

According to the question:-

☞\frac{1}{3}  \times   \rm \pi \times  {r}^{2} \times  h = 1570 \\  \\  ☞ \cancel\frac{1}{3}  \times   \rm 3.14 \times  {r}^{2} \times   \cancel{15} = 1570 \\  \\   ☞ 3.14\times  {r}^{2} \times  5 = 1570 \\  \\☞  {r}^{2}  =  \frac{1570}{3.14 \times 5}  \\  \\☞  {r}^{2}  = \cancel \frac {1570}{15.70}  \\  \\  ☞{r}^{2}  = 100 \\  \\ ☞r =  \sqrt{100}  \\  \\☞ \dag {\boxed {\blue{ r = 10}}}

Hence, the radius of base is 10 cm.

Answered by Anonymous
2

Answer:-

↝\frac{1}{3}  \times   \rm \pi \times  {r}^{2} \times  h = 1570 \\  \\  ↝ \cancel\frac{1}{3}  \times   \rm 3.14 \times  {r}^{2} \times   \cancel{15} = 1570 \\  \\   ↝ 3.14\times  {r}^{2} \times  5 = 1570 \\  \\↝  {r}^{2}  =  \frac{1570}{3.14 \times 5}\\  \\  ↝{r}^{2}  = 100 \\  \\ ↝r =  \sqrt{100}  \\  \\↝ r = 10

Hence, the radius of base is 10 cm.

Similar questions