Que1 :-- If point ( x , y ) is equidistant from the point ( a+b , b-a ) & ( a-b , a+b then prove that bx = ay
Answers
Answered by
1
Answer:
If the point p(x y) is equidistant from a(a+b b-a) and b(a-b a+b), bx = ay proved.
Step-by-step explanation:
Given P(x, y) is equidistant from points A(a + b, b - a) and B(a - b, b + a).
To find, prove that bx = ay.
∴ PA^{2} =PB^{2}PA
2
=PB
2
Using distance formula,
\sqrt{(x_{2}- x_{1})^{2}+(y_{2}- y_{1})^{2}}
(x
2
−x
1
)
2
+(y
2
−y
1
)
2
⇒{(a+b-x)^{2}+{(b-a-y)^{2}}={(a-b-x)^{2}+{(a+b-y)^{2}}
⇒{(a+b-x)^{2}-(a-b-x)^{2}={(a+b-y)^{2}-(b-a-y)^{2}
⇒(a+b-x+a-b-x)(a+b-x-a+b+x)=(a+b-y+b-a-y)(a+b-y-b+a+y)(a+b−x+a−b−x)(a+b−x−a+b+x)=(a+b−y+b−a−y)(a+b−y−b+a+y)
⇒ (2a-2x)(2b)=(2b-2y)(2a)(2a−2x)(2b)=(2b−2y)(2a)
⇒ (a-x)(b)=(b-y)(a)(a−x)(b)=(b−y)(a)
⇒ ab-bx=ab-ayab−bx=ab−ay
⇒bx=aybx=ay , proved.
Answered by
0
Step-by-step explanation:
i hope it's helped you!!
Attachments:
Similar questions