Math, asked by QuestionAsker4211, 1 year ago

Queation for Everyone.

No Spam
No Copy

Needed Quality Answer

Attachments:

Answers

Answered by Grimmjow
91

\mathsf{Given :\;x = \;\dfrac{2 - \sqrt{3}}{2 + \sqrt{3}}}

\mathsf{Multiplying\;the\;Numerator\;and\;Denominator\;with\;(2 - \sqrt{3}), We\;get :}

\mathsf{\implies x = \dfrac{(2 - \sqrt{3})(2 - \sqrt{3})}{(2 + \sqrt{3})(2 - \sqrt{3})}}

★  We know that : (a + b)(a - b) = a² - b²

\mathsf{\implies x = \dfrac{(2 - \sqrt{3})^2}{(2)^2 - (\sqrt{3})^2}}

★  We know that : (a - b)² = a² - 2ab + b²

\mathsf{\implies x = \dfrac{(2)^2 + (\sqrt{3})^2 - (2)(2)\sqrt{3}}{4 - 3}}

\mathsf{\implies x = {4 + 3 - 4\sqrt{3}}}

\mathsf{\implies x = {7 - 4\sqrt{3}}}

\mathsf{\implies \dfrac{1}{x} = \dfrac{1}{7 - 4\sqrt{3}}}

\mathsf{Multiplying\;the\;Numerator\;and\;Denominator\;with\;(7 + 4\sqrt{3}), We\;get :}

\mathsf{\implies \dfrac{1}{x} = \dfrac{7 + 4\sqrt{3}}{(7 - 4\sqrt{3})(7 + 4\sqrt{3})}}

\mathsf{\implies \dfrac{1}{x} = \dfrac{7 + 4\sqrt{3}}{(7)^2 - (4\sqrt{3})^2}}

\mathsf{\implies \dfrac{1}{x} = \dfrac{7 + 4\sqrt{3}}{49 - (4)^2(\sqrt{3})^2}}

\mathsf{\implies \dfrac{1}{x} = \dfrac{7 + 4\sqrt{3}}{49 - (16)(3)}}

\mathsf{\implies \dfrac{1}{x} = \dfrac{7 + 4\sqrt{3}}{49 - 48}}

\mathsf{\implies \dfrac{1}{x} = {7 + 4\sqrt{3}}}

\mathsf{\implies x + \dfrac{1}{x} = (7 - 4\sqrt{3}) + ({7 + 4\sqrt{3})}}

\mathsf{\implies x + \dfrac{1}{x} = (7 + 7 - 4\sqrt{3} + 4\sqrt{3})}}

\mathsf{\implies x + \dfrac{1}{x} = (7 + 7)}}

\mathsf{\implies x + \dfrac{1}{x} = 14}}


Sauron: great answer : )
Grimmjow: Thank you! Raven (^.^)
tina9961: Superb_ fabulous /!! Ans☺✌
ashu1721: gud ans..
Anonymous: Awesome Answer !!
Grimmjow: Thank you! ^^'' (Bhave - Tina - Ashu - Rohit)
Anonymous: Perfect answer :)
Grimmjow: Thank you! Sejal (^.^)
Answered by generalRd
66

ANSWER

14

Step By step Explanation

Here we have =>

x= \dfrac{2 - \sqrt 3}{2+\sqrt 3}

=>x= \dfrac{(2 - \sqrt 3)\times(2-\sqrt 3)}{(2+\sqrt 3)(2-\sqrt 3)}

=>x= \dfrac{(2 - \sqrt 3)^2}{(2)^2 - (\sqrt 3)^2}

{By using

(a+b)(a-b)={a^2 - b^2}}

=>x=  \dfrac{4 + 3 - 4\sqrt 3} {4-3}

=>x= 7 - 4\sqrt 3

Now,

The value of\dfrac{1}{x} will be >

=> \dfrac{1}{7 - 4\sqrt 3}

Now, on multiplying by 7 + 4\sqrt 3 in numerator and denominator we get=>

\dfrac{(1)(7 + 4\sqrt 3)}{(7 - 4\sqrt 3)(7 + 4\sqrt 3)}

By using

(a+b)(a-b)={a^2 - b^2} we get >

=> \dfrac{7 + 4\sqrt 3}{49 - 48}

=> \dfrac{7 + 4\sqrt 3}{1}

=> {7 + 4\sqrt 3}

Hence,

x + \dfrac{1}{x}

=> {7 + 4\sqrt 3} + 7 - 4\sqrt 3

=> 14

Remember

1) (A+ B)² = A² + B² + 2 A* B

2) A² - B² =(A+B)(A-B)


pratyush4211: But answer is 14 .
generalRd: ok let me check
generalRd: now check guys
generalRd: ^_^
Anonymous: there is some coding error !!
generalRd: umm
generalRd: latex prior
Similar questions