Math, asked by TheLazyNobita, 10 months ago

Ques 4 : Express in the form of \displaystyle\frac{p}{q}.
(i) 0.90
(ii) 1.0001
(iii) 0.\overline{621}
(iv) 0.4\overline{7}
(v) 0.4 \overline{7}

Answers

Answered by waqarsd
10

Step-by-step explanation:

(1) \:  \:  \displaystyle{0.9} \\  \\ \bold{no. \: of \: numbers \: after \: decimal \: point = 1} \\  \\ multiply \: and \: divide \: with \: 10 \\  \\  \bold{0.9 = 0.9 \times  \frac{10}{10} } \\  \\  \bold{0.9 =  \frac{9}{10} } \\  \\   \color{blue}\large{ \bold{1 \:  .\:  .\:  \frac{9}{10} }}

(2) \:  \:  \displaystyle{1.0001} \\  \\ \bold{no. \: of \: numbers \: after \: decimal \: point = 4} \\  \\ multiply \: and \: divide \: with \: 10000 \\  \\  \bold{1.0001 = 1.0001 \times  \frac{10000}{10000} } \\  \\  \bold{1.0001 =  \frac{10001}{10000} } \\  \\   \color{blue}\large{ \bold{2 \:  .\:  .\:  \frac{10001}{10000} }}

(3) \:  \:  \displaystyle{0. \overline{621}} \\  \\  \bold{let \:  \: x = 0. \overline{621}..... < 1 > }  \\  \\  \bold{1000x = 621. \overline{621}..... < 2 > } \\  \\  < 2 >  -  < 1 >  \\  \\  \bold{1000x - x = 621. \overline{621} - 0. \overline{621}} \\  \\  \bold{999x = 621} \\  \\  \bold{x =  \frac{621}{999} } \\  \\ \bold{x =  \frac{3 \times 207}{3 \times 333} } \\  \\ \bold{x =  \frac{207}{333} } \\  \\  \large \color{blue} \bold{0. \overline{621} =  \frac{207}{333} }

(4) \:  \:  \displaystyle{0.4 \overline{7}} \\  \\  \bold{let \: x =0.4 \overline{7}} \\  \\  \bold{100x = 47. \overline{7}..... <  3 > } \\  \\  \bold{10x = 4 .\overline{7}..... < 4 > } \\  \\  < 3 >  -  < 4 >  \\  \\  \bold{100x - 10x = 4 7.\overline{7} - 4 .\overline{7}} \\  \\  \bold{90x = 43} \\  \\  \bold{x =  \frac{43}{90}}  \\  \\  \large \color{blue} \bold{0 .4\overline{7} =  \frac{43}{90} }

(5) \:  \: 0 .\overline{47} \\  \\  \bold{let \: x = 0.\overline{47}..... < 5 > } \\  \\  \bold{100x = 47 .\overline{47}..... < 6 > } \\  \\  < 6 >  -  < 5 >  \\  \\  \bold{100x - x = 47 .\overline{47} - 0 .\overline{47}} \\  \\  \bold{99x = 47} \\  \\  \bold{x =  \frac{47}{99}}  \\  \\  \large \color{blue} \bold{0 .\overline{47} =  \frac{47}{99}}

 <marquee> HOPE IT HELPS

Answered by Anonymous
162

⠀ ⠀ ⠀ ⠀ ⠀⠀{\huge {\underline{\underline {\frak {\red {Answer}}}}}}

Here in the given question, we have to express the given values in the form of \dfrac{p}{q}

⠀ ⠀ ⠀ ❇0.90

The values are after two places of decimal.

So in fraction,

= {\pink{\boxed{\bf{\orange{\underline{ \dfrac{90}{100}}}}}}}

______________________________________

⠀ ⠀ ⠀ ❇1.0001

The question the values are after four places of decimal.

So in fraction,

= {\pink{\boxed{\bf{\orange{\underline{ \dfrac{10001}{10000}}}}}}}

______________________________________

⠀ ⠀ ⠀ ❇0.\overline{621}

Let x = 0.\overline{621} ⠀ ⠀- (1)

On multiplying equation (1) by 100

={\bf { 1000x =621.621....}} ⠀ ⠀- (2)

Now, equation(2) - equation(1)

={\bf { 1000x =621.621....}} ⠀ ⠀

={\bf { (-)x =(-)0.621....}}

={\bf { 999x =621.00....}}

={\pink{\boxed{\bf{\orange{\underline { x =\dfrac{621}{999}}}}}}}

______________________________________

⠀ ⠀ ⠀ ❇ 0.4\overline{7}

Let x = 04.\overline{7} ⠀ ⠀- (1)

On multiplying equation (1) by 10

={\bf { 10x =4.7....}} ⠀ ⠀

={\bf { 10x =4.7777...}} ⠀ ⠀- (2)

On multiplying equation (2) by 10

={\bf { 100x =47.7777...}} ⠀ ⠀- (3)

Now, equation(3) - equation(2)

={\bf { 100x =47.7777....}} ⠀ ⠀

={\bf { (-)10x =(-)4.7777....}}

={\bf { 90x =43.0000....}}

={\pink{\boxed{\bf{\orange{\underline { x =\dfrac{43}{90}}}}}}}

______________________________________

⠀ ⠀ ⠀ ❇ 0.4\overline{7}

Let x = 04.\overline{7} ⠀ ⠀- (1)

On multiplying equation (1) by 10

={\bf { 10x =4.7....}} ⠀ ⠀

={\bf { 10x =4.7777...}} ⠀ ⠀- (2)

On multiplying equation (2) by 10

={\bf { 100x =47.7777...}} ⠀ ⠀- (3)

Now, equation(3) - equation(2)

={\bf { 100x =47.7777....}} ⠀ ⠀

={\bf { (-)10x =(-)4.7777....}}

={\bf { 90x =43.0000....}}

={\pink{\boxed{\bf{\orange{\underline { x =\dfrac{43}{90}}}}}}}

____________________________

Similar questions