Math, asked by BiwasMayank, 11 months ago

Ques - Bisectors of angles A, B and C of a triangle ABC intersect its circumcircle at D, E and F respectively. Prove that the angles of the triangle DEF are 90° – (½)A, 90° – (½)B and 90° – (½)C.​

Answers

Answered by Anonymous
9

Answer:

Solution:

Here, ABC is inscribed in a circle with center O and the bisectors of ∠A, ∠B and ∠C intersect the circumcircle at D, E and F respectively.

Now, join DE, EF and FD

As angles in the same segment are equal, so,

∠FDA = ∠FCA ————-(i)

∠FDA = ∠EBA ————-(i)

Adding equations (i) and (ii) we have,

∠FDA + ∠EDA = ∠FCA + ∠EBA

Or, ∠FDE = ∠FCA + ∠EBA = (½)∠C + (½)∠B

We know, ∠A + ∠B + ∠C = 180°

So, ∠FDE = (½)[∠C + ∠B] = (½)[180° – ∠A]

⇒ ∠FDE = [90 – (∠A/2)]

In a similar way,

∠FED = [90 – (∠B/2)]

And,

∠EFD = [90 – (∠C/2)]

Hope it will be helpful :)

Answered by Anonymous
17

Answer:

\huge\sf\underline\mathtt\red{Answer:}

check the above attachment!

Hope it will be helpful :)....✍️

Attachments:
Similar questions