Math, asked by aarti89, 8 months ago

ques - If a and B are rational numbers and 3√5+√3/√5-√3 = a+b√15 find the values of a and b​

Answers

Answered by Anonymous
1

\sf\red{\underline{\underline{Answer:}}}

\sf{The \ value \ of \ a \ and \ b \ are \ 10 \ and \ 2}

\sf{respectively.}

\sf\orange{Given:}

\sf{\implies{a+b\sqrt15=\frac{3\sqrt5+\sqrt3}{\sqrt5-\sqrt3}}}

\sf\pink{To \ find:}

\sf{The \ value \ of \ a \ and \ b.}

\sf\green{\underline{\underline{Solution:}}}

\sf{\implies{a+b\sqrt15=\frac{3\sqrt5+\sqrt3}{\sqrt5-\sqrt3}}}

____________________________________

\sf{\implies{\frac{3\sqrt5+\sqrt3}{\sqrt5-\sqrt3}}}

\sf{On \ rationalising \ the \ denominator}

\sf{\implies{\frac{3\sqrt5+\sqrt5(\sqrt5+\sqrt3)}{\sqrt5-\sqrt3(\sqrt5+\sqrt3)}}}

\sf{\implies{\frac{15+3\sqrt15+5+\sqrt15}{\sqrt5^{2}-\sqrt3^{2}}}}

\sf{\implies{\frac{20+4\sqrt15}{5-3}}}

\sf{\implies{\frac{2(10+2\sqrt15)}{2}}}

\sf{\implies{10+2\sqrt15}}

__________________________________

\sf{\therefore{a+b\sqrt15=10+2\sqrt15}}

\sf{On \ comparing}

\boxed{\sf{a=10}}

\sf{b\sqrt15=2\sqrt15}

\sf{\therefore{b=\frac{2\sqrt15}{\sqrt15}}}

\boxed{\sf{\therefore{b=2}}}

\sf\purple{\tt{\therefore{The \ value \ of \ a \ and \ b \ are \ 10 \ and \ 2}}}

\sf\purple{\tt{respectively.}}

Similar questions