Ques. if x4 + 1/x4 = 47, then find the value of x3 + 1/x3
Answers
Answered by
211
x⁴ + (1/x⁴) = 47
Adding and subtracting 2 on LHS,
x⁴ + (1/x⁴) + 2 - 2 = 47
[(x²)² + (1/x²)² + 2 × (1/x²) x²] = 47+2
( x² + 1/x² )² = 49
( x² + 1/x² )² = 7²
x² + 1/x² = 7 [neglecting the negative sign]
x² + 1/x² + 2 - 2 = 7
x² + 2.x².1/x² + 1/x² = 7+2
(x + 1/x)² = 9
(x+ 1/x)² = 3²
x + 1/x = 3 [neglecting the negative sign]
x³ + 1/x³ = (x+ 1/x)³ - 3.x.1/x(x + 1/x)
= (3)³ - 3(3)
= 27-9
= 18
-WonderGirl
Adding and subtracting 2 on LHS,
x⁴ + (1/x⁴) + 2 - 2 = 47
[(x²)² + (1/x²)² + 2 × (1/x²) x²] = 47+2
( x² + 1/x² )² = 49
( x² + 1/x² )² = 7²
x² + 1/x² = 7 [neglecting the negative sign]
x² + 1/x² + 2 - 2 = 7
x² + 2.x².1/x² + 1/x² = 7+2
(x + 1/x)² = 9
(x+ 1/x)² = 3²
x + 1/x = 3 [neglecting the negative sign]
x³ + 1/x³ = (x+ 1/x)³ - 3.x.1/x(x + 1/x)
= (3)³ - 3(3)
= 27-9
= 18
-WonderGirl
Similar questions
Social Sciences,
8 months ago
English,
8 months ago