Math, asked by itzCutieangle, 3 months ago

Ques:- In triangle PQR, right-angled at Q, PR + QR = 25 cm and PQ = 5 cm. Determine the values of sin P, cos P and tan P.

spammers stay away..
no copy paste..​

Answers

Answered by Anonymous
3

⇒PQ=5cm

⇒PR+QR=25cm

⇒PR=25−QR

Now, In △PQR

 ⇒(PR) {}^{2} =PQ {}^{2} +QR  {}^{2}

⇒(25−QR) {}^{2} =52+QR {}^{2}  \\ </p><p></p><p>⇒625+qr {}^{2} -  50QR \\ =25+QR2 \\ </p><p></p><p>⇒50QR=600 </p><p></p><p>

QR=12cm \\ </p><p></p><p>⇒PR=25−12=13cm</p><p></p><p>

sin \: p =  \frac{qr}{pr} =   \frac{12}{13} ,cos \: p =  \frac{pq}{pr} =  \\  \frac{5}{13} ,tan \: p =  \frac{qr}{pq} =  \frac{12}{5}   \\ </p><p>Hence, the answers are sinP=

 \frac{12}{13},cos \: p =  \frac{5}{13}  ,tan \: p =  \frac{12}{5}

Answered by SUNSHINEPEARL
3

⇒PQ=5cm

⇒PR+QR=25cm

⇒PR=25−QR

Now, In △PQR

⇒(PR)

2=PQ

2 +QR

⇒(25−QR)

2=52+QR

⇒625+QR

⇒50QR=600

⇒QR=12cm

⇒PR=25−12=13cm

HENCE AN

13

12

.

Similar questions