Math, asked by basantidevi8586, 9 months ago

Ques- The sum of a two digit no. and then number
obtained by reversing the order of digit is 105 . when 9 is subtracted from the no. the digit interchange their places. find the no.

Answers

Answered by Anonymous
26

\blue{\bold{\underline{\underline{Answer:}}}}

 \:\:

As your given question doesn't give any natural number hence,

 \:\:

Correct question :

The sum of a two digit no. and then number

The sum of a two digit no. and then numberobtained by reversing the order of digit is 165 . when 9 is subtracted from the no. the digit interchange their places. find the no.

 \:\:

 \green{\underline \bold{Given :}}

 \:\:

  • Sum of a two digit no. and then number obtained by reversing the order of digit is 165 .

 \:\:

  • When 9 is subtracted from the no. the digit interchange their places.

 \:\:

 \red{\underline \bold{To \: Find:}}

 \:\:

  • The original number

 \:\:

\large{\orange{\underline{\tt{Solution :-}}}}

 \:\:

Let the tens digit be 'x'

Let the ones digit be 'y'

 \:\:

 \underline{\bold{\texttt{Original Number :}}}

 \:\:

\purple\longrightarrow  \sf 10x + y

 \:\:

 \underline{\bold{\texttt{Reversed Number :}}}

 \:\:

\purple\longrightarrow  \sf 10y + x

 \:\:

 \purple{\underline \bold{According \: to \: the \ question :}}

 \:\:

Sum of original number and reversed number is 165

 \:\:

 \sf \longmapsto 10x + y + 10y + x = 165

 \:\:

 \sf \longmapsto 11x + 11y = 165

 \:\:

 \underline{\bold{\texttt{Dividing the above equation by 11 }}}

 \:\:

 \sf \longmapsto x + y = 15 ------(1)

 \:\:

Also,

When 9 is subtracted from the no. the digit interchange their places.

 \:\:

 \sf \longmapsto 10x + y - 9 = 10y + x

 \:\:

 \sf \longmapsto 9x - 9y = 9

 \:\:

 \underline{\bold{\texttt{Dividing the above equation by 9 }}}

 \:\:

 \sf \longmapsto x - y = 1 -------(2)

 \:\:

 \underline{\bold{\texttt{Adding (1) \& (2)}}}

 \:\:

 \sf \longmapsto x + y + x - y = 15 + 1

 \:\:

 \sf \longmapsto 2x = 16

 \:\:

 \sf \longmapsto x = \dfrac { 16 } { 2 }

 \:\:

 \bf \dashrightarrow x = 8

 \:\:

 \underline{\bold{\texttt{Putting x = 8 in (1)}}}

 \:\:

 \sf 8 + y = 15

 \:\:

 \sf \longmapsto y = 15 - 8

 \:\:

 \bf \dashrightarrow y = 7

 \:\:

So,

 \:\:

 \purple{\bold{Original \: Number \: will \: be :}}

 \:\:

\red\longrightarrow  \sf 10(8) + (7)

 \:\:

  • 87

 \:\:

Hence the original number is 87

\rule{200}5

Answered by sunitameena45647
0

Answer:

ur num. is 87 ....................

Similar questions