Math, asked by chiragverma9954, 9 months ago

Ques - y = log ( √x-1 - √x+1 ) . Find dy/dx .

Answers

Answered by senboni123456
0

Step-by-step explanation:

Given ,

y =  log( \sqrt{x - 1} -  \sqrt{x + 1}  )

Differentiating both sides,

 \frac{dy}{dx}  =  \frac{ \frac{dy}{dx} ( \sqrt{x - 1} -  \sqrt{x + 1} ) }{ \sqrt{x - 1}  -  \sqrt{x + 1} }

 =  >  \frac{dy}{dx}  =  \frac{ \frac{1}{2 \sqrt{x - 1} } -  \frac{1}{2 \sqrt{x + 1} }  }{ \sqrt{x - 1}  -  \sqrt{x + 1} }

 =  >  \frac{dy}{dx}  =   \frac{1}{2}. \frac{ \frac{ \sqrt{x + 1}  -  \sqrt{x - 1} }{ \sqrt{ {x}^{2} - 1 } } }{ \sqrt{x - 1}  -  \sqrt{x + 1} }

 =  >  \frac{dy}{dx} =  \frac{ - 1}{2 \sqrt{ {x}^{2}  - 1} }

Hope this will help you

Similar questions