Question
03
ja) Calculate the acceleration a' of the system and the tensions 1 and 12 in the strings as shown in Figure 1)
Assume that the table and the pulleys are frictionless and the string is massless and etensible)
10 kg
Table
OO SHOT ON REDMI
5 kg
AL DUAL CAMERA
Figure !
Answers
Answer:
qnxjxjj to me and I will be there at 7 pm and I will be there at 7 pm and I will be there
Explanation:
yyyyyy to me and yyyyyy to me yet to receive the money to pay for the last minute change
Answer:
Answer:-
a = 1.4 m/s^2a=1.4m/s2
T_1 = 22.4 NT1=22.4N
T_2 = 33.6 NT2=33.6N
Given :-
g = 9.8 m/s²
\begin{lgathered}m_1 = 2kg\\ M = 8kg \\ m_2 = 4kg\end{lgathered}m1=2kgM=8kgm2=4kg
To find :-
The acceleration of the whole system and the tension force.
Solution:-
Let the mass be m_1 , M, m_2m1,M,m2 of each block respectively.
LetT_1 and T_2T1andT2 be the tension force on string.
For bock m_1m1
acceleration is in upward.
→\mathsf{T_1 - m_1 g = F_{Net} }T1−m1g=FNet
→\mathsf{T_1 -m_1g = m_1a}T1−m1g=m1a
→\mathsf {T_1 = m_1a + m_1 g}-----1T1=m1a+m1g−−−−−1
For block MM
acceleration is in right side.
→\mathsf{T_2 - T_1 = F_{Net}}T2−T1=FNet
→\mathsf{T_2 -T_1 = Ma}------2T2−T1=Ma−−−−−−2
For block m_2m2
acceleration is in downward direction.
→\mathsf{m_2g -T_2 = m_2a}m2g−T2=m2a
→\mathsf{-T_2 = m_2a - m_2 g}-----3−T2=m2a−m2g−−−−−3
Adding equation 1 , 2 and 3.
We get,
→\mathsf{ T_1 + T_2 -T_1 -T_2 = m_1a +m_1g + Ma + m_2a -m_2g }T1+T2−T1−T2=m1a+m1g+Ma+m2a−m2g
→\mathsf{0 = m_1g -m_2g +m_1a + m_2a + Ma}0=m1g−m2g+m1a+m2a+Ma
→\mathsf{m_2g -m_1g = a(m_1 + m_2 + M) }m2g−m1g=a(m1+m2+M)
→\mathsf{g(m_2 -m_1) = a(m_1 +m_2 + M)}g(m2−m1)=a(m1+m2+M)
→\mathsf{a = \left(\dfrac{g\left(m_2-m_1\right)}{m_1 + m_2 +m_3 }\right)}a=(m1+m2+m3g(m2−m1))