Question 1
1 Point
Consider any triangle ABC with sides a=BC, b=CA & c=AB cosB/cosC =
option 1- (c-b.cosA)+(b-c.cosA)
option 2- (c-b.cosA)(b-c.cosA)
option 3- (c-b.cosA)/(b-c)
option 4- (c-b.cosA)/(b-c.cosA)
Answers
Answered by
2
Answer:
Step-(b+c)cosA+(c+a)cosB+(a+b)cosC
⇒ bcosA+ccosA+ccosB+acosB+acosC+bcosC
⇒ (bcosC+ccosB)+(ccosA+acosC)+(acosB+bcosA) ----( 1 )
Using projection formula,
a=(bcosC+ccosB)
b=(ccosA+acosC)
c=(acosB+bcosA)
Substituting above values in ( 1 ) we get,
⇒ a+b+c
∴ (b+c)cosA+(c+a)cosB+(a+b)cosC=a+b+c
by-step explanation:
Similar questions