Math, asked by rayaishik, 3 months ago

Question 1:
(a) If the sum of p terms of an A.P. is equal to sum of its q terms. Prove that the sum of
(p + q) terms of it is equal to zero.​

Answers

Answered by Anonymous
42

Given

 \sf \to \: S_p = S_q

To Proved

 \sf \to \: S_{p + q} = 0

Formula

 \sf \to \: S_n =  \dfrac{n}{2}  \{2a + (n - 1)d \}

So

 \sf \to \: S_p =  \dfrac{p}{2}  \{2a + (p - 1)d \}

and

 \sf \to \:  S_q =  \dfrac{q}{2}  \{2a + (q - 1)d \}

According to question, we can write as

 \sf \to \:  \dfrac{p}{2}  \{2a + (p - 1)d \} =  \dfrac{q}{2}  \{2a + (q - 1)d \}

\sf \to \:  {p}  \{2a + (p - 1)d \} =  {q}\{2a + (q - 1)d \}

 \sf \to \: p \{2a + pd - d \} = q \{2a + dq - d \}

 \sf \to \: 2ap +  {p}^{2} d - dp = 2aq + d {q}^{2}  - dq

 \sf \to 2ap - 2aq +  {p}^{2} d -  {q}^{2} d - dp + dq = 0

 \sf\to2a(p - q) + d( {p}^{2}  -  {q}^{2}) - d(p - q) = 0

Now Simplify

 \sf \to \: ( {a}^{2}  -  {b}^{2} ) = (a + b)(a - b)

we get

 \sf \to \: 2a(p - q) + d(p - q)(p + q) - d(p - q) = 0

Now Take a common

 \sf \to \: (p - q) \{2a + d(p + q) - d \} = 0

 \sf \to \: 2a +  \{ ( p + q) - 1 \}d = 0 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: (i)

Now Take

\sf \to \: S_{p + q} =  \dfrac{(p + q)}{2}  \{2a + (p + q - 1)d  \}

Now Put the value

 \sf \to \: 2a =  -  \{(p + q) - 1 \}d

we get

\sf \to \: S_{p + q} =  \dfrac{(p + q)}{2}  \{ -  (p + q - 1)d + (p + q - 1)d  \}

\sf \to \: S_{p + q} =  \dfrac{(p + q)}{2}  \{ 0 \}

\sf \to \: S_{p + q} = 0

Hence Proved

Answered by Anonymous
102

Answer:

Given :-

  • The sum of p terms of an A.P is equal to sum of its q term.

Prove That :-

  • The sum of (p + q) terms of it is equal to zero.

Formula Used :-

 \longmapsto \sf\boxed{\bold{\pink{S_n =\: \dfrac{n}{2}\bigg[2a + (n - 1)d\bigg]}}}\\

Solution :-

Given :

 \mapsto \sf S_p =\: \dfrac{p}{2}\bigg[2a + (p - 1)d\bigg]

And,

 \mapsto \sf S_q =\: \dfrac{q}{2}\bigg[2a + (q - 1)d\bigg]

According to the question by using the formula we get,

 \implies \sf S_p =\: S_q

 \implies \sf \dfrac{p}{2}\bigg[2a + (p - 1)d\bigg] =\: \dfrac{q}{2}\bigg[2a + (q - 1)d\bigg]\\

 \implies \sf p[2a + (p - 1)d] =\: q[2a + (q - 1)d]\\

 \implies \sf 2ap + (p - 1)pd =\: 2aq + (q - 1)qd\\

 \implies \sf 2ap + {p}^{2}d - pd =\: 2aq + {q}^{2} - qd\\

 \implies \sf 2ap - 2aq =\: {q}^{2}d - qd - {p}^{2}d + pd\\

 \implies \sf 2a(p - q) =\: d(q^2 - p^2) + d(p - q)\\

 \implies \sf 2a(p - q) =\: d(q + p)(q - p) + d(p - q)\\

 \implies \sf 2a(p - q) =\: d\bigg[(q + p)(q - p) + (p - q)\bigg]\\

 \implies \sf 2a(p - q) =\: d\bigg[- (q + p)(p - q) + (p - q)\bigg]\\

 \implies \sf 2a(p - q) =\: d(p - q)\bigg[1 - q - p\bigg]\\

 \implies \sf 2a =\: d(1 - q - p)\\

 \implies \sf\bold{\purple{2a =\: d(1 - p - q)\: ----\: (Equation\: No\: 1)}}\\

Now,

 \leadsto \sf S_{p + q} =\: \bigg(\dfrac{p + q}{2}\bigg) \bigg[2a + (p + q - 1)d\bigg]\\

 \implies \sf S_{p + q} =\: \bigg(\dfrac{p + q}{2}\bigg) \bigg[(1 - q - p)d + (p + q - 1)d\bigg][\because\: From\: equation\: no\: 1]\\

 \implies \sf S_{p + q} =\: \bigg(\dfrac{p + q}{2}\bigg)d(\cancel{1} \cancel{- q} \cancel{- p} \cancel{+ p} \cancel{+ q} \cancel{- 1})\\

 \implies \sf\bold{\red{S_{p + q} =\: 0}}

{\large{\bold{\purple{\underline{\diamondsuit\: HENCE, PROVED}}}}}


VishnuPriya2801: Nice !!
Similar questions