Math, asked by BrainlyHelper, 1 year ago

Question 1 Find the values of other five trigonometric functions if cos x = -1/2, x lies in third quadrant.

Class X1 - Maths -Trigonometric Functions Page 63

Answers

Answered by abhi178
14

Cosx = -1/2 , where x lies in third quadrant.
We know, in 3rd quadrant tang∅, and cot∅ are positive.

Cosx = -1/2 = b/h
So, p = √(h² - b²) = √(2²-1²)
= ±√3
Now, sinx = P/h = ±√3/2
But sinx is negative in 3rd quadrant so, sinx = -√3/2

cosecx = 1/sinx = 1/(-√3/2) = -2/√3

Tanx = P/b = ±√3/1
we know, tanx is positive so,
Tanx = √3
Cotx = 1/tanx = 1/√3

Secx = 1/cosx = 1/(-1/2) =-2
Answered by Anonymous
9

\Large{\textbf{\underline{\underline{According\:to\:the\:Question}}}}

\tt{\rightarrow cosx=-\dfrac{1}{2}}

As we know that :-

\tt{\rightarrow secx=\dfrac{1}{cosx}}

\tt{\rightarrow secx=\dfrac{1}{-(1/2)}}

secx = -2

Also we know that :-

{\boxed{\sf\:{sin^2x+cos^2x=1}}}

Hence,

sin²x = 1 - cos²x

{\boxed{\sf\:{Putting\;the\;values\;:-}}}

\tt{\rightarrow sin^2x=1-(-\dfrac{1}{2})^2}

\tt{\rightarrow sin^2x=1-\dfrac{1}{4}}

\tt{\rightarrow sin^2x=\dfrac{3}{4}}

Hence,

\tt{\rightarrow sinx=\pm\dfrac{\sqrt{3}}{2}}

Here we get that x lies in third quadrant.

Hence, value of sinx will be negative.

Now,

\tt{\rightarrow sinx=-\dfrac{\sqrt{3}}{2}}

\tt{\rightarrow cosecx=\dfrac{1}{sinx}}

\tt{\rightarrow cosecx=\dfrac{1}{(-\sqrt{3}/2)}}

\tt{\rightarrow cosecx=-\dfrac{2}{\sqrt{3}}}

Now,

\tt{\rightarrow tanx=\dfrac{sinx}{cosx}}

\tt{\rightarrow tanx=\dfrac{-(\sqrt{3}/2)}{-(1/2)}}

tanx = √3

Now,

\tt{\rightarrow cotx=\dfrac{1}{tanx}}

\tt{\rightarrow cotx=\dfrac{1}{\sqrt{3}}}

Similar questions