Math, asked by Anonymous, 3 months ago

Question :
1. In a factory, the production of bicycles rose to 13,31000 from 10,00,000 in 3 years. Find the rate of growth per annum.

2. The population of a town is increasing at the rate of 10 % per annum. What will be the population of town after three years if the present population is 15000?

3. The difference between the compound Interest and Simple Interest on a certain sum for 2 years at 6 % per annum is Rs. 90. Find the Sum.

Answers

Answered by SachinGupta01
2

Solution - 1

 \sf \: Present \:  population \:  =  \: 13,31,000

 \sf \: Previous  \: Population \:  = \:  10,00,000

 \sf \: Number \:  of  \: years  \: (n)  \: =  \: 3

 \sf \: Present  \: production  \: =  \: Previous  \: production   \:  \bigg(1 \:   +  \:  \dfrac{R}{100}  \bigg)^{n}

 \sf   13,31,000 = 10,00,000 \: =   \:  \:  \bigg(1 \:   +  \:  \dfrac{R}{100}  \bigg)^{3}

 \sf  \dfrac{13,31,000}{10,00,000}  \:  =  \: \:  \bigg(1 \:   +  \:  \dfrac{R}{100}  \bigg)^{3}

 \sf  \dfrac{13,31}{10,00}  \:  =  \: \:  \bigg(1 \:   +  \:  \dfrac{R}{100}  \bigg)^{3}

 \sf   \bigg(\dfrac{11}{10} \bigg)^{3}   \:  =  \: \:  \bigg(1 \:   +  \:  \dfrac{R}{100}  \bigg)^{3}

 \sf   \bigg(\dfrac{11}{10} \bigg)   \:  =  \: \:  \bigg(1 \:   +  \:  \dfrac{R}{100}  \bigg)

 \sf   \bigg(\dfrac{11}{10} \:  - 1 \bigg)   \:  =  \: \:  \bigg( \dfrac{R}{100}  \bigg)

 \sf   \bigg(\dfrac{1}{10}  \bigg)   \:  =  \: \:  \bigg( \dfrac{R}{100}  \bigg)

 \sf \bigg( \dfrac{100}{10}  \bigg) \:  =  \: R

 \bf \: R  \: =  \: 10

\sf \: Hence,  \: the \:  required \:  rate  \: of  \: growth \:  =  \: 10 \:  \% \:  annum.

______________________________________

Solution - 2

 \sf \:   \bf Given :

 \sf \: Present \:  population \:  (P)  \: =  \: 15000.

  \sf \: Rate  \: of \:  Growth  \: or \:  Increase \:  =  \: 10  \: \%  \: per  \: annum.

 \sf \: Time  \: (n)  \: = \:  3 \:  years.

 \sf \: Population  \: after \:  3 \:  years  \: =  \: P \bigg( \: 1  \: + \:  \dfrac{R}{100}\bigg)^{n}

 \:   \sf \: = \: 15000 \:  \bigg( 1 \:  +  \:  \dfrac{10}{100}  \bigg)^{n}

 \:   \sf \: = \: 15000 \:  \bigg( \dfrac{11}{100}  \bigg)^{3}

 \:   \sf \: = \: 15000 \:  \times  \:    \bigg( \dfrac{11}{100}   \:  \times  \: \dfrac{11}{100} \:  \times  \: \dfrac{11}{100} \bigg)

 \sf \:  \:  \:  \longrightarrow  \:  19,965

 \sf \: Hence  \: population  \: after  \: 3  \: years \:  = \:  Rs. \:  19,965.

______________________________________

Solution - 3

 \sf \:   \bf \: Given :

 \sf \: Principal \:  =  \: Rs. 90

 \sf \: Time  \: (n)  \: =  \: 2  \: years

 \sf \: Rate  \: =  \: 6  \: \%

 \sf \: Difference \:  = P \:   \bigg(\dfrac{R}{100}  \bigg)^{2}

 \sf \: 90 \:  =  \:  \dfrac{P \:  \times  \: 6 \times  \: 6}{100 \:  \times 100}

 \sf \:  P\:  =  \:  \dfrac{90 \:  \times  \: 100\times  \: 100}{ 100\times  \: 100}

 \bf \: =  \: Rs. \:  25000

______________________________________

Similar questions