Math, asked by 901mudit, 7 months ago

Question. 1 : In ∆ ABC, right-angled at B, AB = 24 cm, BC = 7 cm. Determine: (i) sin A, cos A (ii) sin C, cos C

Attachments:

Answers

Answered by BrainlyTornado
33

ANSWER:

  • (i) sin A = 7/25 , cos A = 24/25

  • (ii) sin C = 24/25 , cos C = 7/25

GIVEN:

  • Right-angled at B

  • AB = 24 cm

  • BC = 7 cm

TO FIND:

  • (i) sin A , cos A

  • (ii) sin C , cos C

EXPLANATION:

By using Pythagoras theorem:

The square of the hypotenuse will be equal to the sum of the squares of the other two sides.

AC² = BC² + AB²

AC² = 24² + 7²

AC² = 576 + 49

AC² = 625

AC = 25 cm

\rule{200}{1}

(i) Sin A = opposite side / hypotenuse

BC is the opposite side of ∠A

Sin A = 7  /  25

Cos A = adjacent side / hypotenuse

AB is the Adjacent  side of ∠A

Cos A = 24  /  25

\rule{200}{1}

(ii) Sin C = opposite side / hypotenuse

AB is the opposite  side of ∠C

Sin C = 24  /  25

Cos C = adjacent / hypotenuse

BC is the adjacent  side of ∠C

Cos C = 7  /  25

REFER ATTACHMENT FOR DIAGRAM.

Attachments:
Answered by Anonymous
37

 \tt \huge \underline\pink{question}

In ∆ ABC, right-angled at B, AB = 24 cm, BC = 7 cm. Determine: (i) sin A, cos A (ii) sin C, cos C

\tt \huge \underline\pink{answer}

 \bf \green{ \: in \: right \: angled \:  \triangle \: ABC \: we \: have \: AB = 24 \: cm \: and \: BC = 7 \: cm}

 \bf \red{ \therefore \: using \: pythagoras \: theorem \:  {AC}^{2}  =  {AB}^{2}  +  {BC}^{2} }

 \bf \bold{ \implies \:  {AC}^{2}  =  {24}^{2}  +  {7}^{2}  = 576 + 49 = 625 =  {25}^{2} }

 \bf \bold{ \implies \: AC = 25 \: cm}

 \bf \: 1) \purple{sin \: A =  \frac{BC}{AC}  =  \frac{7}{25} } \:  \:  \bf{and} \:  \:  \:   \bf \purple{cos \: A =  \frac{AB}{AC}  =  \frac{24}{25}}

 \bf 2) \purple{ \: sin \: C =  \frac{AB}{AC}  =  \frac{24}{25} } \:  \:  \:  \bf \:{ and} \:  \:  \:  \bf \purple{ \: cos \: C =  \frac{BC}{AC}  =  \frac{7}{25} }

TRIGONOMETRIC ratios :-

 \bf \huge \star{ \: sin \theta \:  =  \frac{P}{H} }

 \bf \huge \star{cos \:  \theta =  \frac{B}{H} }

 \bf \huge \star{tan \:  \theta =  \frac{P}{B} }

Attachments:
Similar questions