Math, asked by asssemyemen9677, 11 months ago

Question 1
Simplify :
(i) (2⁵ × 7³) ÷ (8³ × 7) (ii) (25 × 5² × t⁸) ÷ (10³ × t⁴)

Answers

Answered by isafsafiya
3

Given:-

  1. ( {2}^{5}  \times  {7}^{3} ) \div ( {8}^{3}  \times 7)
  2. (25 \times  {5}^{2}  \times  {t}^{8}) \div ( {10}^{3 }   \times  {t}^{4} )

To find

  • simplyfy

Solution:-

( {2}^{5}  \times  {7}^{3} ) \div ( {8}^{3}  \times 7) \\  \\ open \: this \: as \: much \: as \: u \: want \\  \\  \frac{2 \times 2 \times 2 \times 2 \times 2 \times 7 \times 7 \times 7}{8 \times 8 \times 8 \times  \times 7}  \\  \\   \frac{ {7}^{2} }{ {4}^{2} }  \\  \\   {(\frac{7}{4} )}^{2}  \\  \\  \frac{49}{16}

for 2 nd que:-

(25 \times  {5}^{2}  \times  {t}^{8}) \div ( {10}^{3 }   \times  {t}^{4} ) \\  \\  \frac{25 \times 5 \times 5 \times t \times t \times t \times t \times t \times t \times t \times t}{10 \times 10 \times 10 \times t \times t \times t \times t}  \\  \\  \frac{5 \times  {t}^{4} }{ {2}^{3} }  \\  \\  \frac{5  \times {t}^{4} }{8}

Answered by jitendra420156
0

(2^5\times 7^3)\div(8^3\times 7) =3\frac{1}{16}

(25 \times 5^2 \times t^8)\div(10^3\times t^4) =\frac{5t^4}{8}

Step-by-step explanation:

(i)(2^5\times 7^3)\div(8^3\times 7)

=\frac{2^5\times 7^3}{8^3\times 7}

=\frac{2^5\times 7^3}{2^9\times 7}

=2^{(5-9)}\times 7^{(3-1)

=\frac{7^2}{2^4}

=\frac{49}{16}

=3\frac{1}{16}

(ii)(25 \times 5^2 \times t^8)\div(10^3\times t^4)

=\frac{5^4\times t^8}{5^3\times 2^3\times t^4}

=\frac{5^{4-3} \times t^{(8-4)}}{2^3}

=\frac{5t^4}{8}

Similar questions