Math, asked by dichuchohaun, 1 month ago

Question 1
The area of triangle with given two sides 18cm and 10cm respectively and perimeter equal to 42 cm
is:

Plz

Answers

Answered by Sauron
41

Answer:

The area of triangle is 21√11 cm².

Step-by-step explanation:

Sides of triangle = 18 cm and 10 cm

Perimeter = 42 cm

Let the third side be y.

Perimeter of triangle = Sum of all sides

\longrightarrow 42 = 18 + 10 + y

\longrightarrow 42 = 28 + y

\longrightarrow y = 42 – 28

\longrightarrow y = 14 cm

Area of triangle =

By heron's formula,

  • Side a = 18 cm
  • Side b = 10 cm
  • Side c = 14 cm

\boxed{\rm{Semi \: perimeter =  \frac{Perimeter}{2}}}

\rm{\longrightarrow} \: s =  \dfrac{42}{2}

\rm{\longrightarrow} \: s =  21

Area =

\boxed{\rm{A=\sqrt{s(s - a)(s - b)(s - c)}}}

\rm{\longrightarrow} \: A=\sqrt{21(21 - 18)(21 - 10)(21 - 14)}

\rm{\longrightarrow} \: A=\sqrt{21 \times 3 \times 11 \times 7}

\rm{\longrightarrow} \: A=\sqrt{7 \times 3 \times 3 \times 11 \times 7}

\rm{\longrightarrow} \: A=7 \times 3 \sqrt{11}

\rm{\longrightarrow} \: A=21 \sqrt{11}  \:  {cm}^{2}

Area of triangle = 21√11 cm²

Therefore, the area of triangle is 21√11 cm².

Answered by MяMαgıcıαη
39

Answer:

‣ Area of triangle \mapsto\:{\boxed{\tt{20\sqrt{11}\:cm^2}}}

Explanation:

Given information,

We have a triangle with given two sides 18 cm and 10 cm respectively and perimeter equal to 42 cm. Find it's area.

  • a = 18 cm
  • b = 10 cm
  • c = ?
  • Perimeter of ∆ = 42 cm

⚘ [a, b, c are sides of ∆]

Finding third side (c) ::

  • \boxed{\underline{\underline{\bf{\red{Perimeter_{\triangle} = a + b + c}}}}}\:\bf{\dag}

Putting all values,

\\ \longrightarrow\:\tt 42 = 18 + 10 + c

\\ \longrightarrow\:\tt 42 = 28 + c

\\ \longrightarrow\:\tt 42 - 28 = c

\\ \longrightarrow\:{\underline{\boxed{\tt{c = 14\:cm}}}}\:\bigstar

  • Hence, third side of ∆ (c) is 14 cm.

Finding semi perimeter (s) ::

  • \boxed{\underline{\underline{\bf{\pink{s = \dfrac{a + b + c}{2}}}}}}\:\bf{\dag}

Putting all values,

\\ \longrightarrow\:\tt s = \dfrac{18 + 10 + 14}{2}

\\ \longrightarrow\:\tt s = {\cancel{\dfrac{42}{2}}}

\\ \longrightarrow\:{\underline{\boxed{\tt{s = 21\:cm}}}}\:\bigstar

  • Hence, semi perimeter of ∆ (s) is 21 cm.

⚘ Now, we have all required values. So, let's find area of triangle by using heron's formula;

Finding area of ::

  • \boxed{\underline{\underline{\bf{\purple{Area_{\triangle} = \sqrt{s(s - a)(s - b)(s - c)}}}}}}\:\bf{\dag}

Putting all values,

\\ \longrightarrow\:\tt Area_{\triangle} = \sqrt{21(21 - 18)(21 - 10)(21 - 14)}

\\ \longrightarrow\:\tt Area_{\triangle} = \sqrt{21(3)(11)(7)}

\\ \longrightarrow\:\tt Area_{\triangle} = \sqrt{21\:\times\:3\:\times\:11\:\times\:7}

\\ \longrightarrow\:\tt Area_{\triangle} = \sqrt{3\:\times\:7\:\times\:3\:\times\:11\:\times\:7}

\\ \longrightarrow\:\tt Area_{\triangle} = \sqrt{\underline{3\:\times\:3}\:\times\:\underline{7\:\times\:7}\:\times\:11}

\\ \longrightarrow\:\tt Area_{\triangle} = 3\:\times\:7\:\times\:\sqrt{11}

\\ \longrightarrow\:\tt Area_{\triangle} = 21\:\times\:\sqrt{11}

\\ \longrightarrow\:{\underline{\boxed{\tt{Area_{\triangle} = 21\sqrt{11}\:cm^2}}}}\:\bigstar

  • Hence, area of ∆ is 2111 cm².

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions