Math, asked by AmitGugar, 4 months ago

Question:- 1

three numbers are to one another 2:3:4. the sum of their cubes is 33957 find the numbers.




Question:- 2

Find the cube root of 91125.​

Answers

Answered by thebrainlykapil
91

\large\underline{ \underline{ \sf \maltese{ \: Question:- \: 1}}}

  • Three numbers are to one another 2:3:4. the sum of their cubes is 33957. Find the numbers.

\large\underline{ \underline{ \sf \maltese{ \: Given:- }}}

  • Let the First Number be = \sf\green{ 2x}
  • Let the Second Number be = \sf\green{ 3x}
  • Let the Third Number be = \sf\green{ 4x}

\large\underline{ \underline{ \sf \maltese{ \: Solution:- }}}

\begin{gathered}\begin{gathered}\begin{gathered}: \implies \underline\blue{ \boxed{\displaystyle \sf \bold\orange{\: ( \: 2x \: )^{3}  \:  +  \: ( \: 3x \: )^{3} \:  +  \: ( \: 4x \: )^{3} \:  =  \: 33957  }} }\\ \\\end{gathered}\end{gathered}\end{gathered}

\qquad \quad {:} \longrightarrow \sf{\sf{ ( \: 2x \: )^{3}  \:  +  \: ( \: 3x \: )^{3} \:  +  \: ( \: 4x \: )^{3} \:  =  \: 33957  }}\\ \\

\qquad \quad {:} \longrightarrow \sf{\sf{ 8x ^{3}  \:  +  \:  27x ^{3} \:  +  \:  64x ^{3} \:  =  \: 33957}}\\ \\

\qquad \quad {:} \longrightarrow \sf{\sf{ 99x ^{3} \:  =  \: 33957}}\\ \\

\qquad \quad {:} \longrightarrow \sf{\sf{ x ^{3} \:  =  \:   \cancel\frac{33957}{99} }}\\ \\

\qquad \quad {:} \longrightarrow \sf{\sf{ x ^{3} \:  =  \:   343}}\\ \\

\qquad \quad {:} \longrightarrow \sf{\sf{ x  \:  =  \:    \sqrt[3]{343}  }}\\ \\

\qquad\quad {:} \longrightarrow \underline \red{\boxed{\sf{ \:x \: = \: 7  }}}

  • First Number = 2x = 2 × 7 = 14
  • Second Number = 3x = 3 × 7 = 21
  • Third Number = 4x = 4 × 7 = 28

\bf \therefore \; First \;number = 14

\bf \therefore \; Second \; Number = 21

\bf \therefore \; Third \;number = 28

━━━━━━━━━━━━━━━━━━━━━━━━━

 \\  \\  \\

\large\underline{ \underline{ \sf \maltese{ \: Question:- \: 2}}}

  • Find the cube root of 91125.

\large\underline{ \underline{ \sf \maltese{ \: Solution:- }}}

Resolving the given numbers into prime factors

  • 91125 = 5 × 5 × 5 × 3 × 3 × 3 × 3 × 3 × 3

Grouping the factor in triples of equal factors

  • 91125 = \sf\green{5 \times 5 \times 5 \: } \times \sf\blue{ \: 3 \times 3 \times 3} \times \sf\red{ \: 3 \times 3 \times 3}

Taking one factor from each triple

  •  \sqrt[3]{91125}  \:  =  \: 5 \:  \times  \: 3 \:  \times  \: 3

\begin{gathered}\begin{gathered}\qquad \therefore\: \sf{  \sqrt[3]{91125} \: = \underline {\underline{ 45}}}\\\end{gathered}\end{gathered}

Note:-

  • Prime Factorisation is in Attachment .

━━━━━━━━━━━━━━━━━━━━━━━━━

Attachments:
Answered by ItzCuppyCakeJanu
6

Answer:

Correct answer⬆⬆⬆⬆

Step-by-step explanation:

Similar questions