Math, asked by malaikakris, 6 months ago

QUESTION 10
20
A class committee is to be made that consists of 2 freshmen, 2 sophomores, 3 juniors, and 3 seniors. If students are being randomly chosen from
groups of 12 freshmen, 17 sophomores, 16 juniors, and 20 seniors, how many possible committees can be formed?

Answers

Answered by hemajatt1206
1

Answer:

Freshmen: ₁₂C₂ \frac{12!}{2!(12 - 2)!} = \frac{12!}{2!*10!} = \frac{12 * 11 * 10!}{2*10!} = \frac{12 * 11}{2} = 6 * 11 = 66

2!(12−2)!

12!

=

2!∗10!

12!

=

2∗10!

12∗11∗10!

=

2

12∗11

=6∗11=66

Sophomore: ₁₇C₂ = \frac{17!}{2!(17 - 2)!} = \frac{17!}{2!*15!} = \frac{17 * 16 * 15!}{2 * 15!} = \frac{17 * 16}{2} = 17 * 8 = 136

2!(17−2)!

17!

=

2!∗15!

17!

=

2∗15!

17∗16∗15!

=

2

17∗16

=17∗8=136

Juniors: ₁₆C₃ = \frac{16!}{3!(16 - 3)!} = \frac{16!}{3!*13!} = \frac{16 * 15 * 14 * 13!}{3 * 2 * 13!} = \frac{16 * 15 * 14}{2 * 3} = 8 * 5 * 14 = 560

3!(16−3)!

16!

=

3!∗13!

16!

=

3∗2∗13!

16∗15∗14∗13!

=

2∗3

16∗15∗14

=8∗5∗14=560

Seniors: ₂₀C₃ = \frac{20!}{3!(20 - 3)!} = \frac{20!}{3!*17!} = \frac{20 * 19 * 18 * 17!}{3*2*17!} = \frac{20 * 19 * 18}{2 * 3} = 10 * 19 * 6 = 1140

3!(20−3)!

20!

=

3!∗17!

20!

=

3∗2∗17!

20∗19∗18∗17!

=

2∗3

20∗19∗18

=10∗19∗6=1140

₁₂C₂ * ₁₇C₂ * ₁₆C₃ * ₂₀C₃

66 * 136 * 560 * 1140 = 5,730,278,400

Answer: 5,730,278,400

Similar questions