Question 10 CD and GH are respectively the bisectors of ∠ACB and ∠EGF such that D and H lie on sides AB and FE of ΔABC and ΔEFG respectively. If ΔABC ∼ ΔFEG, Show that: (i) CD/GH = AC/FG (ii) ΔDCB ∼ ΔHGE (iii) ΔDCA ∼ ΔHGF
Class 10 - Math - Triangles Page 140
Answers
Answered by
294
(i) It is given that ΔABC ~ ΔFEG.
∴ ∠A = ∠F, ∠B = ∠E, and ∠ACB = ∠FGE
∠ACB = ∠FGE
∴ ∠ACD = ∠FGH (Angle bisector)
And, ∠DCB = ∠HGE (Angle bisector)
In ΔACD and ΔFGH,
∠A = ∠F (Proved above)
∠ACD = ∠FGH (Proved above)
∴ ΔACD ~ ΔFGH (By AA similarity criterion)
⇒ CD/GH = AC/FG
(ii) In ΔDCB and ΔHGE,
∠DCB = ∠HGE (Proved above)
∠B = ∠E (Proved above)
∴ ΔDCB ~ ΔHGE (By AA similarity criterion)
(iii) In ΔDCA and ΔHGF,
∠ACD = ∠FGH (Proved above)
∠A = ∠F (Proved above)
∴ ΔDCA ~ ΔHGF (By AA similarity criterion)
∴ ∠A = ∠F, ∠B = ∠E, and ∠ACB = ∠FGE
∠ACB = ∠FGE
∴ ∠ACD = ∠FGH (Angle bisector)
And, ∠DCB = ∠HGE (Angle bisector)
In ΔACD and ΔFGH,
∠A = ∠F (Proved above)
∠ACD = ∠FGH (Proved above)
∴ ΔACD ~ ΔFGH (By AA similarity criterion)
⇒ CD/GH = AC/FG
(ii) In ΔDCB and ΔHGE,
∠DCB = ∠HGE (Proved above)
∠B = ∠E (Proved above)
∴ ΔDCB ~ ΔHGE (By AA similarity criterion)
(iii) In ΔDCA and ΔHGF,
∠ACD = ∠FGH (Proved above)
∠A = ∠F (Proved above)
∴ ΔDCA ~ ΔHGF (By AA similarity criterion)
Answered by
72
hope you will understand...
Attachments:
Similar questions
Math,
7 months ago
History,
7 months ago
Math,
1 year ago
Psychology,
1 year ago
Math,
1 year ago
Social Sciences,
1 year ago
Social Sciences,
1 year ago