Question 10: Prove cot¯¹ (√1+sinx + √1-sinx /√1+sinx - √1-sinx) = x/2, x ∈(0,π/4 )
Class 12 - Math - Inverse Trigonometric Functions
Answers
Answered by
2
Hey there!!!
⇒ cot¯¹ (√1+sinx + √1-sinx /√1+sinx - √1-sinx) = x/2 , x ∈(0,π/4 )
⇒ By rationalizing denominator,
⇒ cot¯¹ [ (√1+sinx + √1- sinx)² / (√1+sinx)² - (√1- sinx)²]
⇒ cot¯¹ [ ( 1+ sinx +1 - sinx + 2√1-sin²x ) / (1 + sinx - 1 + sinx) ]
⇒ cot¯¹ [(2 + 2cosx) / 2 sinx]
⇒ cot¯¹ [ 2(1+cosx) / 2sinx]
⇒ cot¯¹ [ (1+cosx) / sinx]
using identity, 1+cos = 2cos²x/2 and sinx = 2 sinx/2.cosx/2
⇒ cot¯¹ [2cos²x/2 / 2 sinx/2.cosx/2]
⇒ cot¯¹( cot x/2)
⇒ x/2
Hence proved!!!
⇒ cot¯¹ (√1+sinx + √1-sinx /√1+sinx - √1-sinx) = x/2 , x ∈(0,π/4 )
⇒ By rationalizing denominator,
⇒ cot¯¹ [ (√1+sinx + √1- sinx)² / (√1+sinx)² - (√1- sinx)²]
⇒ cot¯¹ [ ( 1+ sinx +1 - sinx + 2√1-sin²x ) / (1 + sinx - 1 + sinx) ]
⇒ cot¯¹ [(2 + 2cosx) / 2 sinx]
⇒ cot¯¹ [ 2(1+cosx) / 2sinx]
⇒ cot¯¹ [ (1+cosx) / sinx]
using identity, 1+cos = 2cos²x/2 and sinx = 2 sinx/2.cosx/2
⇒ cot¯¹ [2cos²x/2 / 2 sinx/2.cosx/2]
⇒ cot¯¹( cot x/2)
⇒ x/2
Hence proved!!!
Answered by
0
Similar questions