Question 10 Using Binomial Theorem, indicate which number is larger (1.1)^10000 or 1000.
Class X1 - Maths -Binomial Theorem Page 167
Answers
Answered by
36
(1.1)^(10000) = (1 + 0.1)^(10000)
use formula,
(x + y)^n = nC0.x^n + nC1.x^(n-1)y + nC2.x^(n-2)y^2 + ........+nCn.y^n
(1 + 0.1)^(10000) = 10000C0.(1)^(10000) + 10000C1.(1)^9999(0.1) + ....... other terms
= 1 × 1 + 10000 × 0.1 + ......... other terms .
= (1 + 1000 + .......other terms ) > 1000
hence, (1.1)^(10000) > 1000
use formula,
(x + y)^n = nC0.x^n + nC1.x^(n-1)y + nC2.x^(n-2)y^2 + ........+nCn.y^n
(1 + 0.1)^(10000) = 10000C0.(1)^(10000) + 10000C1.(1)^9999(0.1) + ....... other terms
= 1 × 1 + 10000 × 0.1 + ......... other terms .
= (1 + 1000 + .......other terms ) > 1000
hence, (1.1)^(10000) > 1000
Answered by
16
Answer:
Ur Answer is in the attachment.....
Attachments:
Similar questions