Math, asked by BrainlyHelper, 1 year ago

Question 12: Find dy/dx : y = sin¯¹(1-x²/ 1+x²), 0 < x < 1

Class 12 - Math - Continuity and Differentiability

Answers

Answered by Anonymous
9
y = sin¯¹(1-x²/ 1+x²)
put x = tan∅
y = sin-¹(1-tan²∅/1+tan²∅)
y = sin-¹(cos2∅) { 1-tan²∅/1+tan²∅ = cos2∅
y = sin-¹{sin(π/2-2∅)}
Now 0<x<1 => 0<tan∅ <1 => 0<∅<π/4
=> 0<π/2-2∅<π/2
from this
y= π/2-2∅
differentiating w.r.t x
y = π/2-2tan-¹x
dy/dx = -2/1+x² { d/dx(tan-¹x = 1/1+x2
Answered by sandy1816
0

y =  {sin}^{ - 1} ( \frac{1 -  {x}^{2} }{1 +  {x}^{2} } ) \\  \\ put \:  \: x = tan \theta \\  \\ y =  {sin}^{ - 1} ( \frac{1 -  {tan}^{2} \theta }{1 +  {tan}^{2} \theta } ) \\  \\ y =  {sin}^{ - 1} (cos2 \theta) \\  \\ y=  {sin}^{ - 1} (sin( \frac{\pi}{2} - 2 \theta))  \\  \\  y = \frac{\pi}{2}  -   2\theta \\  \\ y = \frac{\pi}{2} -    2{tan}^{ - 1} x \\  \\  \frac{dy}{dx}  =  \frac{ - 2}{1 +  {x}^{2} }

Similar questions