Math, asked by BrainlyHelper, 1 year ago

Question 13 Find the equation of the hyperbola satisfying the give conditions: Foci (±4, 0), the latus rectum is of length 12

Class X1 - Maths -Conic Sections Page 262

Answers

Answered by abhi178
5
concept :- if foci (±c, 0) then, standard equation of hyperbola is x²/a² - y²/b² = 1 where c² = a²+ b² and length of latusrectum = 2b²/a .

A/C to question,
given, Foci( ±4, 0) = (±c , 0)
c = 4 ,
and Length of latusrectum = 12 = 2b²/a
12 = 2b²/a
6a = b² ------------------(1)

now, use from concept ,
c² = a² + b²
here, c = 4
4² = a² + b²
16 = a² + b² -------------------(2)

from equation (1) and (2)
16 = a² + 6a
a² + 16a - 16 = 0
a² + 8a - 2a - 16 = 0
(a + 8)(a - 2) = 0
a = 2, a ≠ -8 { because a can't be negative because a is distance }
b² = 6a = 6 × 2 = 12 [ from equation (1)

hence, equation of hyperbola is
x²/4 - y²/12 = 1


Answered by BrainlyConqueror0901
1

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Eqn\:of\:hyperbola=3x^{2}-y^{2}=12}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{ \underline \bold{Given : }} \\  \tt{ :  \implies  Foci = (\pm4,0)} \\  \\   \tt{ : \implies length\:of\:latus\:rectum= 12} \\  \\ \red{ \underline \bold{To \: Find : }}  \\   \tt{ : \implies  Eqn \:of \: hyperbola = ?}

• According to given question :

  \circ \: \tt{Let \: eqn   \: be \:  \frac{ {x}^{2} }{ {a}^{2} }  -  \frac{ {y}^{2} }{ {b}^{2} }  = 1} -  -  -  -  - (1) \\  \\\bold{As\:we\:know\:that}\\ \tt{:\implies foci=\sqrt{(4-(-4))^{2}+(0-0)^{2}}}\\\\ \tt{:\implies 2ae=8}\\\\  \tt{: \implies ae = 4}

 \text{Both \: side \: squaring} \\   \tt{: \implies  {a}^{2}  {e}^{2}  = 16}  -  -  -  -  - (2) \\ \\ \bold{As\:we\:know\:that} \\ \tt{:  \implies Length \: of \: latus \: rectum =  12 }\\  \\  \tt{: \implies  \frac{2  {b}^{2}  }{a} = 12} \\  \\   \tt{: \implies   {b}^{2}  = 6a -  -  -  -  -  (3)} \\  \\ \bold{As \: we \: know \: that}  \\  \tt{: \implies  {b}^{2}  =  {a}^{2} ( {e}^{2}  - 1)} \\  \\  \tt{:  \implies  {b}^{2}  =  {a}^{2}  {e}^{2}  -  {a}^{2} } \\  \\   \tt{:  \implies  {b}^{2} +  {a}^{2}   =  {a}^{2}  {e}^{2} } -----(4)\\  \\  \text{Putting \: values \: of \: (1) \: and \: (2) \: in \: (4)} \\  \tt{:  \implies6a +  {a}^{2}  = 16} \\  \\  \tt{: \implies {a}^{2}  + 6a - 16 = 0} \\  \\  \tt{:  \implies(a - 2)(a  + 8) = 0} \\  \\   \tt{: \implies a = 2 \:and \:  - 8} \\  \\   \tt{:  \implies a = 2} \:  \:  \: (Value \: of \: a \: not \: be \: negative) \\  \\   \bold{Putting \: value \: of \: a \: in \: (3)} \\  \tt{:  \implies  {b}^{2}  = 6\times 2 } \\    \\   \green{\tt{ : \implies   {b}^{2}  = 12}}\\ \\  \text{Putting \: value \: of \: a \: and \: b \: in \: (1)} \\ \tt{:\implies \frac{x^{2}}{4}-\frac{y^{2}}{12}=1 }\\ \\    \green{\tt{\therefore Eqn \: of \:hyperbola \: is \:  3{x}^{2}  -  {y}^{2}  = 12}}

Similar questions