Math, asked by sanju2363, 1 month ago

Question:

-16, 8, -4, 2, ….., A.M and G.M of pth and qth terms are roots of 4x²-9x+5=0
then p+q = ?



Answer: 10.00​

Answers

Answered by krishnakkyadav11
54

Answer:

4x2 - 9x + 5 = 0

⇒ x = 1, 5/4

Now given 5/4 =tp+tq2,tp+tq2, tp tq where

tr = -16 (-1/2)r-1

so 5/4 = -8[(-1/2)p-1+ (-1/2)q-1]

1 = 256(-1/2)p+q-2

⇒ 2p+q-2 = (-1)p+q-2 28

hence p + q =10

Step-by-step explanation:

Hope you like that mark me braillist please

Answered by BrainlyTornado
76

ANSWER:

  • The value of p + q = 10.

\\ \\

GIVEN:

  • Series is -16, 8, -4, 2……

  • A.M and G.M of pth and qth terms are roots of 4x² - 9x + 5 = 0.

\\ \\

TO FIND:

  • The value of p + q.

\\ \\

EXPLANATION:

 \boxed{ \bold{ \large{ \red{A.M = \dfrac{T_p + T_q}{2}}}}} \\ \\ \\ \boxed{ \bold{ \large{ \blue{ G.M = \sqrt{T_pT_q}}}}} \\  \\  \\  \sf  \orange{\dashrightarrow Also \ A.M \geq G.M.} \\  \\  \\\leadsto\sf 4x^{2}  - 9x + 5 = 0.  \\  \\  \\  \leadsto\sf 4x(x) - 4x  - 5x + 5 = 0  \\  \\  \\  \leadsto\sf 4x(x - 1) - 5x(x - 1) = 0 \\  \\  \\ \leadsto\sf (x - 1)(4x - 5) = 0 \\  \\  \\ \sf\leadsto x = 1 \ and \ x =  \dfrac{ 5}{4} \\  \\  \\ \sf  G.M = 1(A.M \geq G.M) \\  \\  \\

 \boxed{ \bold{ \large{ \red{T_n= ar^{n-1}}}}} \\ \\ \\  \leadsto \sf a =  - 16 \ and \ r =   - \dfrac{1}{2}  \\  \\  \\  \leadsto \sf T_p=  - 16 \bigg(- \dfrac{1}{2} \bigg)^{p-1} \\ \\ \\ \leadsto \sf T_q=  - 16 \bigg(- \dfrac{1}{2} \bigg)^{q-1} \\ \\ \\  \sf \leadsto \sqrt{256 \bigg(- \dfrac{1}{2} \bigg)^{p +q -2} } = 1  \\  \\  \\ \sf \leadsto 16 \sqrt{ \bigg(- \dfrac{1}{2} \bigg)^{p +q -2} } = 1  \\  \\  \\ \sf  \green{ \star \ Squaring \ on \:both \ sides.} \\  \\  \\ \sf \leadsto \bigg(- \dfrac{1}{2} \bigg)^{p +q -2}  =  \dfrac{1}{256}  \\  \\  \\ \sf \leadsto 2^{p +q -2}  = {2}^{8}  \\  \\  \\ \sf \pink{\star\ Bases \ are \ equal \ so, \ equate \ the\ powers.}\\ \\ \\ \sf \leadsto p +q -2 = 8  \\  \\  \\ \sf \leadsto p +q = 10\\ \\ \\

The value of p + q = 10.

Similar questions