Math, asked by kiranmurge2002, 3 months ago

Question #16
The events A1 and A2 form the
partition of the sample space. If P(A1)
= P(A2) =1/2, P(
BA1) = 2/5, P(B|A2)
= 4/15 then P(A1B) =​

Answers

Answered by shadowsabers03
9

The events A_1 and A_2 form the partition of the sample space, which means,

  • A_1\cup A_2=S
  • A_1\cap A_2=\phi

That's why,

\longrightarrow P(S)=P(A_1)+P(A_2)=1

Given,

  • P(A_1)=P(A_2)=\dfrac{1}{2}
  • P(B\,|\,A_1)=\dfrac{2}{5}
  • P(B\,|\,A_2)=\dfrac{4}{15}

We need to find P(A_1\,|\,B)

We see that,

\longrightarrow B=B\cap S

\longrightarrow B=B\cap(A_1\cup A_2)

\longrightarrow B=(B\cap A_1)\cup(B\cap A_2)\quad\quad\dots(1)

Also,

\longrightarrow(B\cap A_1)\cap(B\cap A_2)=B\cap A_1\cap B\cap A_2

\longrightarrow(B\cap A_1)\cap(B\cap A_2)=B\cap A_1\cap A_2

\longrightarrow(B\cap A_1)\cap(B\cap A_2)=B\cap(A_1\cap A_2)

\longrightarrow(B\cap A_1)\cap(B\cap A_2)=B\cap\phi

\longrightarrow(B\cap A_1)\cap(B\cap A_2)=\phi\quad\quad\dots(2)

(1) and (2) mean the events B\cap A_1 and B\cap A_2 form the partition of B, hence,

\longrightarrow P(B)=P(B\cap A_1)+P(B\cap A_2)\quad\quad\dots(3)

But,

  • P(B\cap A_1)=P(B\,|\,A_1)\cdot P(A_1)
  • P(B\cap A_2)=P(B\,|\,A_2)\cdot P(A_2)

Then (3) becomes,

\longrightarrow P(B)=P(B\,|\,A_1)\cdot P(A_1)+P(B\,|\,A_2)\cdot P(A_2)

\longrightarrow P(B)=\dfrac{2}{5}\cdot\dfrac{1}{2}+\dfrac{4}{15}\cdot\dfrac{1}{2}

\longrightarrow P(B)=\dfrac{1}{5}+\dfrac{2}{15}

\longrightarrow P(B)=\dfrac{1}{3}

Then,

\longrightarrow P(A_1\,|\,B)=\dfrac{P(A_1\cap B)}{P(B)}

\longrightarrow P(A_1\,|\,B)=\dfrac{P(B\cap A_1)}{P(B)}

\longrightarrow P(A_1\,|\,B)=\dfrac{P(B\,|\,A_1)\cdot P(A_1)}{P(B)}

\longrightarrow P(A_1\,|\,B)=\dfrac{\left(\dfrac{2}{5}\cdot\dfrac{1}{2}\right)}{\left(\dfrac{1}{3}\right)}

\longrightarrow\underline{\underline{P(A_1\,|\,B)=\dfrac{3}{5}}}

Hence 3/5 is the answer.

Answered by Anonymous
0

\huge{\underline{\underline{\mathrm{\red{AnswEr}}}}}

The events A_1 and A_2 form the partition of the sample space, which means,

A_1\cup A_2=S

A_1\cap A_2=\phi

That's why,

\longrightarrow P(S)=P(A_1)+P(A_2)=1

Given,

P(A_1)=P(A_2)=\dfrac{1}{2}

P(B\,|\,A_1)=\dfrac{2}{5}

P(B\,|\,A_2)=\dfrac{4}{15}

We need to find P(A_1\,|\,B)

We see that,

\longrightarrow B=B\cap S

\longrightarrow B=B\cap(A_1\cup A_2)

\longrightarrow B=(B\cap A_1)\cup(B\cap A_2)\quad\quad\dots(1)

Also,

\longrightarrow(B\cap A_1)\cap(B\cap A_2)=B\cap A_1\cap B\cap A_2

\longrightarrow(B\cap A_1)\cap(B\cap A_2)=B\cap A_1\cap A_2

\longrightarrow(B\cap A_1)\cap(B\cap A_2)=B\cap(A_1\cap A_2)

\longrightarrow(B\cap A_1)\cap(B\cap A_2)=B\cap\phi

\longrightarrow(B\cap A_1)\cap(B\cap A_2)=\phi\quad\quad\dots(2)

(1) and (2) mean the events B\cap A_1 and B\cap A_2 form the partition of B, hence,

\longrightarrow P(B)=P(B\cap A_1)+P(B\cap A_2)\quad\quad\dots(3)

But,

P(B\cap A_1)=P(B\,|\,A_1)\cdot P(A_1)

P(B\cap A_2)=P(B\,|\,A_2)\cdot P(A_2)

Then (3) becomes,

\longrightarrow P(B)=P(B\,|\,A_1)\cdot P(A_1)+P(B\,|\,A_2)\cdot P(A_2)

\longrightarrow P(B)=\dfrac{2}{5}\cdot\dfrac{1}{2}+\dfrac{4}{15}\cdot\dfrac{1}{2}

\longrightarrow P(B)=\dfrac{1}{5}+\dfrac{2}{15}

\longrightarrow P(B)=\dfrac{1}{3}

Then,

\longrightarrow P(A_1\,|\,B)=\dfrac{P(A_1\cap B)}{P(B)}

\longrightarrow P(A_1\,|\,B)=\dfrac{P(B\cap A_1)}{P(B)}

\longrightarrow P(A_1\,|\,B)=\dfrac{P(B\,|\,A_1)\cdot P(A_1)}{P(B)}

\longrightarrow P(A_1\,|\,B)=\dfrac{\left(\dfrac{2}{5}\cdot\dfrac{1}{2}\right)}{\left(\dfrac{1}{3}\right)}

\longrightarrow\underline{\underline{P(A_1\,|\,B)=\dfrac{3}{5}}}

Hence 3/5 is the answer.

Similar questions